ترغب بنشر مسار تعليمي؟ اضغط هنا

66 - Arnaud Gotlieb 2013
Iterative imperative programs can be considered as infinite-state systems computing over possibly unbounded domains. Studying reachability in these systems is challenging as it requires to deal with an infinite number of states with standard backward or forward exploration strategies. An approach that we call Constraint-based reachability, is proposed to address reachability problems by exploring program states using a constraint model of the whole program. The keypoint of the approach is to interpret imperative constructions such as conditionals, loops, array and memory manipulations with the fundamental notion of constraint over a computational domain. By combining constraint filtering and abstraction techniques, Constraint-based reachability is able to solve reachability problems which are usually outside the scope of backward or forward exploration strategies. This paper proposes an interpretation of classical filtering consistencies used in Constraint Programming as abstract domain computations, and shows how this approach can be used to produce a constraint solver that efficiently generates solutions for reachability problems that are unsolvable by other approaches.
The success of several constraint-based modeling languages such as OPL, ZINC, or COMET, appeals for better software engineering practices, particularly in the testing phase. This paper introduces a testing framework enabling automated test case gener ation for constraint programming. We propose a general framework of constraint program development which supposes that a first declarative and simple constraint model is available from the problem specifications analysis. Then, this model is refined using classical techniques such as constraint reformulation, surrogate and global constraint addition, or symmetry-breaking to form an improved constraint model that must be thoroughly tested before being used to address real-sized problems. We think that most of the faults are introduced in this refinement step and propose a process which takes the first declarative model as an oracle for detecting non-conformities. We derive practical test purposes from this process to generate automatically test data that exhibit non-conformities. We implemented this approach in a new tool called CPTEST that was used to automatically detect non-conformities on two classical benchmark programs, namely the Golomb rulers and the car-sequencing problem.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا