ترغب بنشر مسار تعليمي؟ اضغط هنا

Assuming the Lorentz and CPT invariances we show that neutron-antineutron oscillation implies breaking of CP along with baryon number violation -- i.e. two of Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator in the effective Hamiltonian. This operator mixing neutron and antineutron preserves charge conjugation C and breaks P and T. External magnetic field always leads to suppression of oscillations. Its presence does not lead to any new operator mixing neutron and antineutron.
We construct connected (0,2) sigma models starting from n copies of (2,2) CP(N-1) models. General aspects of models of this type (known as T+O deformations) had been previously studied in the context of heterotic string theories. Our construction pre sents a natural generalization of the nonminimally deformed (2,2) model with an extra (0,2) fermion superfield on tangent bundle T CP(N-1) x C^1. We had thoroughly analyzed the latter model previously, found the exact beta function and a spontaneous breaking of supersymmetry. In contrast, in certain connected sigma models the spontaneous breaking of supersymmetry disappears. We study the connected sigma models in the large-N limit finding supersymmetric vacua and determining the particle spectrum. While the Witten index vanishes in all the models under consideration, in these special cases of connected models one can use a permutation symmetry to define a modification of the Witten index which does not vanish. This eliminates the spontaneous breaking of supersymmetry. We then examine the exact beta functions of our connected (0,2) sigma models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا