ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the variation of the ratio of the equivalent widths of the FeII$lambda$2600 line to the MgII$lambdalambda$2796,2803 doublet as a function of redshift in a large sample of absorption lines drawn from the JHU-SDSS Absorption Line Catalog . We find that despite large scatter, the observed ratio shows a trend where the equivalent width ratio $mathcal{R}equiv W_{rm FeII}/W_{rm MgII}$ decreases monotonically with increasing redshift $z$ over the range $0.55 le z le 1.90$. Selecting the subset of absorbers where the signal-to-noise ratio of the MgII equivalent width $W_{rm MgII}$ is $ge$3 and modeling the equivalent width ratio distribution as a gaussian, we find that the mean of the gaussian distribution varies as $mathcal{R}propto (-0.045pm0.005)z$. We discuss various possible reasons for the trend. A monotonic trend in the Fe/Mg abundance ratio is predicted by a simple model where the abundances of Mg and Fe in the absorbing clouds are assumed to be the result of supernova ejecta and where the cosmic evolution in the SNIa and core-collapse supernova rates is related to the cosmic star-formation rate. If the trend in $mathcal{R}$ reflects the evolution in the abundances, then it is consistent with the predictions of the simple model.
Using a systematic broad-band search technique, we have carried out a survey for large Lya nebulae (or Lya blobs) at 2<z<3 within 8.5 square degrees of the NOAO Deep Wide-Field Survey (NDWFS) Bootes field, corresponding to a total survey comoving vol ume of ~10^8 h_70^-3 Mpc^3. Here, we present our spectroscopic observations of candidate giant Lya nebulae. Of 26 candidates targeted, 5 were confirmed to have Lya emission at 1.7<z<2.7, four of which were new discoveries. The confirmed Lya nebulae span a range of Lya equivalent widths, colors, sizes, and line ratios, and most show spatially-extended continuum emission. The remaining candidates did not reveal any strong emission lines, but instead exhibit featureless, diffuse, blue continuum spectra. Their nature remains mysterious, but we speculate that some of these might be Lya nebulae lying within the redshift desert (i.e., 1.2<z<1.6). Our spectroscopic follow-up confirms the power of using deep broad-band imaging to search for the bright end of the Lya nebula population across enormous comoving volumes.
The Spitzer Space Telescope has identified a population of ultra-luminous infrared galaxies (ULIRGs) at z ~ 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses of two populations of Spitzer-selected U LIRGs, both of which have extremely red R-[24] colors (dust-obscured galaxies, or DOGs) and compare our results with sub-millimeter selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-IR spectral energy distribution (SED) at rest-frame 1.6um associated with stellar emission (bump DOGs), while the other set of 51 DOGs has a power-law dominated mid-IR SED with spectral features typical of obscured AGN (power-law DOGs). We use stellar population synthesis models applied self-consistently to broad-band photometry in the rest-frame ultra-violet, optical, and near-infrared of each of these populations and test a variety of stellar population synthesis codes, star-formation histories (SFHs), and initial mass functions (IMFs). Assuming a simple stellar population SFH and a Chabrier IMF, we find that the median and inner quartile stellar masses of SMGs, bump DOGs and power-law DOGs are given by log(M_*/M_sun) = 10.42_-0.36^+0.42, 10.62_-0.32^+0.36, and 10.71_-0.34^+0.40, respectively. Implementing more complicated SFHs with multiple age components increases these mass estimates by up to 0.5 dex. Our stellar mass estimates are consistent with physical mechanisms for the origin of z~2 ULIRGs that result in high star-formation rates for a given stellar mass. Such mechanisms are usually driven by a major merger of two gas-rich systems, rather than smooth accretion of gas and small satellites.
Giant Lya nebulae (or Lya blobs) are likely sites of ongoing massive galaxy formation, but the rarity of these powerful sources has made it difficult to form a coherent picture of their properties, ionization mechanisms, and space density. Systematic narrow-band Lya nebula surveys are ongoing, but the small redshift range covered and the observational expense limit the comoving volume that can be probed by even the largest of these surveys and pose a significant problem when searching for such rare sources. We have developed a systematic search technique designed to find large Lya nebulae at 2<z<3 within deep broad-band imaging and have carried out a survey of the 9.4 square degree NOAO Deep Wide-Field Survey (NDWFS) Bootes field. With a total survey comoving volume of ~10^8 h^-3_70 Mpc^3, this is the largest volume survey for Lya nebulae ever undertaken. In this first paper in the series, we present the details of the survey design and a systematically-selected sample of 79 candidates, which includes one previously discovered Lya nebula.
Detailed analysis of the substructure of Lya nebulae can put important constraints on the physical mechanisms at work and the properties of galaxies forming within them. Using high resolution HST imaging of a Lya nebula at z~2.656, we have taken a ce nsus of the compact galaxies in the vicinity, used optical/near-infrared colors to select system members, and put constraints on the morphology of the spatially-extended emission. The system is characterized by (a) a population of compact, low luminosity (~0.1 L*) sources --- 17 primarily young, small (Re~1-2 kpc), disky galaxies including an obscured AGN --- that are all substantially offset (>20 kpc) from the line-emitting nebula; (b) the lack of a central galaxy at or near the peak of the Lya emission; and (c) several nearly coincident, spatially extended emission components --- Lya, HeII, and UV continuum --- that are extremely smooth. These morphological findings are difficult to reconcile with theoretical models that invoke outflows, cold flows, or resonant scattering, suggesting that while all of these physical phenomena may be occurring, they are not sufficient to explain the powering and large extent of Lya nebulae. In addition, although the compact galaxies within the system are irrelevant as power sources, the region is significantly overdense relative to the field galaxy population (by at least a factor of 4). These observations provide the first estimate of the luminosity function of galaxies within an individual Lya nebula system, and suggest that large Lya nebulae may be the seeds of galaxy groups or low-mass clusters.
We present Hubble Space Telescope (HST) imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z~2 with extremely red R-[24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6um associated with stellar emission. These sources, which we call bump DOGs, have star-formation rates of 400-4000 Msun/yr and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission --- a sign of vigorous on-going star-formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGs (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power-law and spectral features that are more typical of obscured active galactic nuclei than starbursts), sub-millimeter selected galaxies (SMGs), and other less-reddened ULIRGs from the Spitzer extragalactic First Look Survey (XFLS). Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 +/- 2.7 kpc vs. 5.5 +/- 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M_20 of -1.08 +/- 0.05 vs. -1.48 +/- 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak star-formation rate period evolve from M_20 = -1.0 to M_20 = -1.7. Less obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less obscured ULIRGs sample the merger near the end of the peak star-formation rate period. Alternatively, it may indicate that the intense star-formation in these less-obscured ULIRGs is not the result of a recent major merger.
Using data from the Spitzer Space Telescope, we analyze the mid-infrared (3-70 micron) spectral energy distributions of dry merger candidates in the Bootes field of the NOAO Deep Wide-Field Survey. These candidates were selected by previous authors t o be luminous, red, early-type galaxies with morphological evidence of recent tidal interactions. We find that a significant fraction of these candidates exhibit 8 and 24 micron excesses compared to expectations for old stellar populations. We estimate that a quarter of dry merger candidates have mid-infrared-derived star formation rates greater than ~1 MSun/yr. This represents a frosting on top of a large old stellar population, and has been seen in previous studies of elliptical galaxies. Further, the dry merger candidates include a higher fraction of starforming galaxies relative to a control sample without tidal features. We therefore conclude that the star formation in these massive ellipticals is likely triggered by merger activity. Our data suggest that the mergers responsible for the observed tidal features were not completely dry, and may be minor mergers involving a gas-rich dwarf galaxy.
We present SHARC-II 350um imaging of twelve 24um-bright (F_24um > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and CARMA 1mm imaging of a subset of 2 DOGs, all selected from the Bootes field of the NOAO Deep Wide-Field Survey. Detections of 4 DOGs at 350um imply IR luminosities which are consistent within a factor of 2 of expectations based on a warm dust spectral energy distribution (SED) scaled to the observed 24um flux density. The 350um upper limits for the 8 non-detected DOGs are consistent with both Mrk231 and M82 (warm dust SEDs), but exclude cold dust (Arp220) SEDs. The two DOGs targeted at 1mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T_dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ~3x10^8 M_sun. In comparison to other dusty z ~ 2 galaxy populations such as sub-millimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2x10^13 L_sun vs. 6x10^12 L_sun for the other galaxy populations), warmer dust temperatures (>35-60 K vs. ~30 K), and lower inferred dust masses (3x10^8 M_sun vs. 3x10^9 M_sun). Herschel and SCUBA-2 surveys should be able to detect hundreds of these power-law dominated DOGs. We use HST and Spitzer/IRAC data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24um-bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z~2 involves a sub-millimeter bright, cold-dust and star-formation dominated phase followed by a 24um-bright, warm-dust and AGN-dominated phase.
A simple mid-infrared-to-optical color criterion of R-[24]>14 Vega mag results in a robust selection of approximately half of the redshift 2 ultraluminous infrared galaxy (ULIRG) population. These `Dust-Obscured Galaxies, or DOGs, have many propertie s that suggest that they are good candidates for systems in a transition phase between gas-rich mergers and QSOs.
Using the Infrared Spectrograph on board the Spitzer Space Telescope, we present low-resolution (64 < lambda / dlambda < 124), mid-infrared (20-38 micron) spectra of 23 high-redshift ULIRGs detected in the Bootes field of the NOAO Deep Wide-Field Sur vey. All of the sources were selected to have 1) fnu(24 micron) > 0.5 mJy; 2) R-[24] > 14 Vega mag; and 3) a prominent rest-frame 1.6 micron stellar photospheric feature redshifted into Spitzers 3-8 micron IRAC bands. Of these, 20 show emission from polycyclic aromatic hydrocarbons (PAHs), usually interpreted as signatures of star formation. The PAH features indicate redshifts in the range 1.5 < z < 3.0, with a mean of <z>=1.96 and a dispersion of 0.30. Based on local templates, these sources have extremely large infrared luminosities, comparable to that of submillimeter galaxies. Our results confirm previous indications that the rest-frame 1.6 micron stellar bump can be efficiently used to select highly obscured starforming galaxies at z~2, and that the fraction of starburst-dominated ULIRGs increases to faint 24 micron flux densities. Using local templates, we find that the observed narrow redshift distribution is due to the fact that the 24 micron detectability of PAH-rich sources peaks sharply at z = 1.9. We can analogously explain the broader redshift distribution of Spitzer-detected AGN-dominated ULIRGs based on the shapes of their SEDs. Finally, we conclude that z~2 sources with a detectable 1.6 micron stellar opacity feature lack sufficient AGN emission to veil the 7.7 micron PAH band.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا