ترغب بنشر مسار تعليمي؟ اضغط هنا

The paper presents an exponential pheromone deposition approach to improve the performance of classical Ant System algorithm which employs uniform deposition rule. A simplified analysis using differential equations is carried out to study the stabili ty of basic ant system dynamics with both exponential and constant deposition rules. A roadmap of connected cities, where the shortest path between two specified cities are to be found out, is taken as a platform to compare Max-Min Ant System model (an improved and popular model of Ant System algorithm) with exponential and constant deposition rules. Extensive simulations are performed to find the best parameter settings for non-uniform deposition approach and experiments with these parameter settings revealed that the above approach outstripped the traditional one by a large extent in terms of both solution quality and convergence time.
The paper presents an exponential pheromone deposition rule to modify the basic ant system algorithm which employs constant deposition rule. A stability analysis using differential equation is carried out to find out the values of parameters that mak e the ant system dynamics stable for both kinds of deposition rule. A roadmap of connected cities is chosen as the problem environment where the shortest route between two given cities is required to be discovered. Simulations performed with both forms of deposition approach using Elitist Ant System model reveal that the exponential deposition approach outperforms the classical one by a large extent. Exhaustive experiments are also carried out to find out the optimum setting of different controlling parameters for exponential deposition approach and an empirical relationship between the major controlling parameters of the algorithm and some features of problem environment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا