ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a deep Suzaku observation of H1821+643, an extremely rare example of a powerful quasar hosted by the central massive galaxy of a rich cooling-core cluster of galaxies. Informed by previous Chandra studies of the cluster, we achieve a spect ral separation of emission from the active galactic nucleus (AGN) and the intracluster medium (ICM). With a high degree of confidence, we identify the signatures of X-ray reflection/reprocessing by cold and slowly moving material in the AGNs immediate environment. The iron abundance of this matter is found to be significantly sub-solar (Z~0.4Zsun), an unusual finding for powerful AGN but in line with the idea that this quasar is feeding from the ICM via a Compton-induced cooling flow. We also find a subtle soft excess that can be described phenomenologically (with an additional black body component) or as ionized X-ray reflection from the inner regions of a high inclination (i=57 degrees) accretion disk around a spinning (a>0.4) black hole. We describe how the ionization state of the accretion disk can be used to constrain the Eddington fraction of the source. Applying these arguments to our spectrum implies an Eddington fraction of 0.25-0.5, with an associated black hole mass of 3-6x10^9Msun.
Unbounded outflows in the form of highly collimated jets and broad winds appear to be a ubiquitous feature of accreting black hole systems. The most powerful jets are thought to derive a significant fraction, if not the majority, of their power from the rotational energy of the black hole. Whatever the precise mechanism that causes them, these jets must therefore exert a braking torque on the black hole. We calculate the spin-up function for an accreting black hole, accounting for this braking torque. We find that the predicted black hole spin-up function depends only on the black hole spin and dimensionless parameters describing the accretion flow. Using recent relativistic magnetohydrodynamical numerical simulation results to calibrate the efficiency of angular momentum transfer in the flow, we find that an ADAF flow will spin a black hole up (or down) to an equilibrium value of about 96% of the maximal spin value in the absence of jets. Combining our ADAF system with a simple model for jet power, we demonstrate that an equilibrium is reached at approximately 93% of the maximal spin value, as found in the numerical simulation studies of the spin-up of accreting black holes, at which point the spin-up of the hole by accreted material is balanced by the braking torque arising from jet production. Our model also yields a relationship between jet efficiency and black hole spin that is in surprisingly good agreement with that seen in the simulation studies, indicating that our simple model is a useful and convenient description of ADAF inflow - jet outflow about a spinning black hole for incorporation in models of the formation and evolution of galaxies, groups and clusters of galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا