ترغب بنشر مسار تعليمي؟ اضغط هنا

The discovery of magic-angle twisted trilayer graphene (tTLG) adds a new twist to the family of graphene moire. The additional graphene layer unlocks a series of intriguing properties in the superconducting phase, such as the violation of Pauli limit and re-entrant superconductivity at large in-plane magnetic field. In this work, we integrate magic-angle tTLG into a double-layer structure to study the superconducting phase. Utilizing proximity screening from the adjacent metallic layer, we examine the stability of the superconducting phase and demonstrate that Coulomb repulsion competes against the mechanism underlying Cooper pairing. Furthermore, we use a combination of transport and thermodynamic measurements to probe the isospin order, which shows that the isospin configuration at half moire filling, and for the nearby fermi surface, is spin-polarized and valley-unpolarized. In addition, we show that valley isospin plays a dominating role in the Pomeranchuk effect, whereas the spin degree of freedom is frozen, which indicates small valley isospin stiffness and large spin stiffness in tTLG. Taken together, our findings provide important constraints for theoretical models aiming to understand the nature of superconductivity. A possible scenario is that electron-phonon coupling stabilizes a superconducting phase with a spin-triplet, valley singlet order parameter.
168 - Aoxue Li , Weiran Huang , Xu Lan 2020
Few-shot learning (FSL) has attracted increasing attention in recent years but remains challenging, due to the intrinsic difficulty in learning to generalize from a few examples. This paper proposes an adaptive margin principle to improve the general ization ability of metric-based meta-learning approaches for few-shot learning problems. Specifically, we first develop a class-relevant additive margin loss, where semantic similarity between each pair of classes is considered to separate samples in the feature embedding space from similar classes. Further, we incorporate the semantic context among all classes in a sampled training task and develop a task-relevant additive margin loss to better distinguish samples from different classes. Our adaptive margin method can be easily extended to a more realistic generalized FSL setting. Extensive experiments demonstrate that the proposed method can boost the performance of current metric-based meta-learning approaches, under both the standard FSL and generalized FSL settings.
The ability to control the strength of interaction is essential for studying quantum phenomena emerging from a system of correlated fermions. For example, the isotope effect illustrates the effect of electron-phonon coupling on superconductivity, pro viding an important experimental support for the BCS theory. In this work, we report a new device geometry where the magic-angle twisted bilayer graphene (tBLG) is placed in close proximity to a Bernal bilayer graphene (BLG) separated by a 3 nm thick barrier. Using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effect on the insulating and superconducting states: as Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity is enhanced. Out results demonstrate the ability to directly probe the role of Coulomb interaction in magic-angle twisted bilayer graphene. Most importantly, the effect of Coulomb screening points toward electron-phonon coupling as the dominant mechanism for Cooper pair formation, and therefore superconductivity, in magic-angle twisted bilayer graphene.
142 - Zhiwu Lu , Jiechao Guan , Aoxue Li 2018
Zero-shot learning (ZSL) is made possible by learning a projection function between a feature space and a semantic space (e.g.,~an attribute space). Key to ZSL is thus to learn a projection that is robust against the often large domain gap between th e seen and unseen class domains. In this work, this is achieved by unseen class data synthesis and robust projection function learning. Specifically, a novel semantic data synthesis strategy is proposed, by which semantic class prototypes (e.g., attribute vectors) are used to simply perturb seen class data for generating unseen class ones. As in any data synthesis/hallucination approach, there are ambiguities and uncertainties on how well the synthesised data can capture the targeted unseen class data distribution. To cope with this, the second contribution of this work is a novel projection learning model termed competitive bidirectional projection learning (BPL) designed to best utilise the ambiguous synthesised data. Specifically, we assume that each synthesised data point can belong to any unseen class; and the most likely two class candidates are exploited to learn a robust projection function in a competitive fashion. As a third contribution, we show that the proposed ZSL model can be easily extended to few-shot learning (FSL) by again exploiting semantic (class prototype guided) feature synthesis and competitive BPL. Extensive experiments show that our model achieves the state-of-the-art results on both problems.
373 - Aoxue Li , Zhiwu Lu , Jiechao Guan 2018
Zero-shot learning (ZSL) aims to transfer knowledge from seen classes to unseen ones so that the latter can be recognised without any training samples. This is made possible by learning a projection function between a feature space and a semantic spa ce (e.g. attribute space). Considering the seen and unseen classes as two domains, a big domain gap often exists which challenges ZSL. Inspired by the fact that an unseen class is not exactly `unseen if it belongs to the same superclass as a seen class, we propose a novel inductive ZSL model that leverages superclasses as the bridge between seen and unseen classes to narrow the domain gap. Specifically, we first build a class hierarchy of multiple superclass layers and a single class layer, where the superclasses are automatically generated by data-driven clustering over the semantic representations of all seen and unseen class names. We then exploit the superclasses from the class hierarchy to tackle the domain gap challenge in two aspects: deep feature learning and projection function learning. First, to narrow the domain gap in the feature space, we integrate a recurrent neural network (RNN) defined with the superclasses into a convolutional neural network (CNN), in order to enforce the superclass hierarchy. Second, to further learn a transferrable projection function for ZSL, a novel projection function learning method is proposed by exploiting the superclasses to align the two domains. Importantly, our transferrable feature and projection learning methods can be easily extended to a closely related task -- few-shot learning (FSL). Extensive experiments show that the proposed model significantly outperforms the state-of-the-art alternatives in both ZSL and FSL tasks.
Motivated by recent proposal by Potter et al. [Phys. Rev. X 6, 031026 (2016)] concerning possible thermoelectric signatures of Dirac composite fermions, we perform a systematic experimental study of thermoelectric transport of an ultrahigh-mobility G aAs/AlxGa1-xAs two dimensional electron system at filling factor v = 1/2. We demonstrate that the thermopower Sxx and Nernst Sxy are symmetric and anti-symmetric with respect to B = 0 T, respectively. The measured properties of thermopower Sxx at v = 1/2 are consistent with previous experimental results. The Nernst signals Sxy of v = 1/2, which have not been reported previously, are non-zero and show a power law relation with temperature in the phonon-drag dominant region. In the electron-diffusion dominant region, the Nernst signals Sxy of v = 1/2 are found to be significantly smaller than the linear temperature dependent values predicted by Potter et al., and decreasing with temperature faster than linear dependence.
76 - Aoxue Li , Zhiwu Lu , Liwei Wang 2017
Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task due to two main issues: lack of sufficient training data for every class and difficulty in learning discriminative features for repres entation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e. zero-shot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot fine-grained classification.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا