ترغب بنشر مسار تعليمي؟ اضغط هنا

101 - Antoine Godin 2019
The design of single-molecule photoswitchable emitters was the first milestone toward the advent of single-molecule localization microscopy that sets a new paradigm in the field of optical imaging. Several photoswitchable emitters have been developed but they all fluoresce in the visible or far-red ranges, missing the desirable near-infrared window where biological tissues are most transparent. Moreover, photocontrol of individual emitters in the near-infrared would be highly desirable for elementary optical molecular switches or information storage elements since most communication data transfer protocols are established in this spectral range. Here we introduce a novel type of hybrid nanomaterials consisting of single-wall carbon nanotubes covalently functionalized with photo-switching molecules that are used to control the intrinsic luminescence of the single nanotubes in the near-infrared (beyond 1 $mu$m). We provide proof-of-concept of localization microscopy based on these bright photoswitchable near-infrared emitters.
62 - Noemie Danne 2018
The intrinsic near-infrared photoluminescence observed in long single walled carbon nanotubes is systematically quenched in ultrashort single-walled carbon nanotubes (usCNTs, below 100 nm length) due to their short dimension as compared to the excito n diffusion length. It would however be key for number of applications to have such tiny nanostructure displaying photoluminescence emission to complement their unique physical, chemical and biological properties. Here we demonstrate that intense photoluminescence can be created in usCNTs (~40 nm length) upon incorporation of emissive sp3-defect sites in order to trap excitons. Using super-resolution imaging at <25 nm resolution, we directly reveal the localization of excitons at the defect sites on individual usCNTs. They are found preferentially localized at nanotube ends which can be separated by less than 40 nm and behave as independent emitters. The demonstration and control of bright near-infrared photoluminescence in usCNTs through exciton trapping opens the possibility to engineering tiny carbon nanotubes for applications in various domains of research including quantum optics and bioimaging.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا