ترغب بنشر مسار تعليمي؟ اضغط هنا

It has proven a significant challenge to experiment and phenomenology to extract precise values of the nucleon sigma terms. This difficulty opens the window for lattice QCD simulations to lead the field in resolving this aspect of nucleon structure. Here we report on recent advances in the extraction of nucleon sigma terms in lattice QCD. In particular, the strangeness component is now being resolved to a precision that far surpasses best phenomenological estimates.
The most recent development of the quark-meson coupling (QMC) model, in which the effect of the mean scalar field in-medium on the hyperfine interaction is also included self-consistently, is used to compute the properties of finite hypernuclei. The calculations for $Lambda$ and $Xi$ hypernuclei are of comparable quality to earlier QMC results without the additional parameter needed there. Even more significantly, the additional repulsion associated with the increased hyperfine interaction in-medium completely changes the predictions for $Sigma$ hypernuclei. Whereas in the earlier work they were bound by an amount similar to $Lambda$ hypernuclei, here they are unbound, in qualitative agreement with the experimental absence of such states. The equivalent non-relativistic potential felt by the $Sigma$ is repulsive inside the nuclear interior and weakly attractive in the nuclear surface, as suggested by the analysis of $Sigma$-atoms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا