ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate heralded qubit amplification for Time-Bin and Fock-state qubits in an all-fibre, telecom-wavelength, scheme that highlights the simplicity, the stability and potential for fully integrated photonic solutions. Exploiting high-efficiency superconducting detectors, the gain, the fidelity and the performance of the amplifier are studied as a function of loss. We also demonstrate the first heralded Fock-state qubit amplifier without post-selection. This provides a significant advance towards demonstrating Device-Independent Quantum Key Distribution as well as fundamental tests of quantum mechanics over extended distances.
322 - Anthony Martin 2011
We report the experimental observation of the nonlocal geometric phase in Hanbury Brown-Twiss polarized intensity interferometry. The experiment involves two independent, polar- ized, incoherent sources, illuminating two polarized detectors. Varying the relative polarization angle between the detectors introduces a geometric phase equal to half the solid angle on the Poincare sphere traced out by a pair of single photons. Local measurements at either detector do not reveal the effect of the geometric phase, which appears only in the coincidence counts between the two detectors, showing a genuinely nonlocal effect. We show experimentally that coincidence rates of photon arrival times at separated detectors can be controlled by the two photon geometric phase. This effect can be used for manipulating and controlling photonic entanglement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا