ترغب بنشر مسار تعليمي؟ اضغط هنا

We present early results from a lattice QCD study seeking a bound $H$-dibaryon using $N_f=2$ flavors of $O(a)$ improved Wilson fermions and a quenched strange quark. We compute a matrix of two-point functions using operators consisting of the two ind ependent local products of six positive-parity-projected quarks with the appropriate quantum numbers, which belong to the singlet and 27-plet irreducible representations of flavor SU(3). To expand this basis, we also independently vary the quark-field smearing, and apply a new scheme to reduce the noise caused by smearing. We then find the ground-state mass by solving the generalized eigenvalue problem. We show results from ensembles with pion masses 451 MeV and 1 GeV, and compare with other lattice calculations.
We extend our analysis of the leading hadronic contribution to the anomalous magnetic moment of the muon using the mixed representation method to study its chiral behavior. We present results derived from local-conserved two-point lattice vector corr elation functions, computed on a subset of light two-flavor ensembles made available to us through the CLS effort with pion masses as low as 190 MeV. The data is analyzed also using the more standard four-momentum method. Both methods are systematically compared as the calculations approach the physical point.
We present first results for two-baryon correlation functions, computed using $N_f=2$ flavours of O($a$) improved Wilson quarks, with the aim of explaining potential dibaryon bound states, specifically the H-dibaryon. In particular, we use a GEVP to isolate the groundstate using two-baryon (hyperon-hyperon) correlation functions $big(langle C_{XY}(t)C_{XY}(0) rangle$, where $XY=LambdaLambda, SigmaSigma, NXi, cdotsbig)$, each of which has an overlap with the H-dibaryon. We employ a `blocking algorithm to handle the large number of contractions, which may easily be extended to N-baryon correlation functions. We also comment on its application to the analysis of single baryon masses ($n$, $Lambda$, $Xi$, $cdots$). This study is performed on an isotropic lattice with $m_pi = 460$ MeV, $m_pi L = 4.7$ and $a = 0.063$ fm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا