ترغب بنشر مسار تعليمي؟ اضغط هنا

A challenge in designing self-assembling building blocks is to ensure the target state is both thermodynamically stable and kinetically accessible. These two objectives are known to be typically in competition, but it is not known how to simultaneous ly optimize them. We consider this problem through the lens of multi-objective optimization theory: we develop a genetic algorithm to compute the Pareto fronts characterizing the tradeoff between equilibrium probability and folding rate, for a model system of small polymers of colloids with tunable short-ranged interaction energies. We use a coarse-grained model for the particles dynamics that allows us to efficiently search over parameters, for systems small enough to be enumerated. For most target states there is a tradeoff when the number of types of particles is small, with medium-weak bonds favouring fast folding, and strong bonds favouring high equilibrium probability. The tradeoff disappears when the number of particle types reaches a value $m_*$, that is usually much less than the total number of particles. This general approach of computing Pareto fronts allows one to identify the minimum number of design parameters to avoid a thermodynamic-kinetic tradeoff. However, we argue, by contrasting our coarse-grained models predictions with those of Brownian dynamics simulations, that particles with short-ranged isotropic interactions should generically have a tradeoff, and avoiding it in larger systems will require orientation-dependent interactions.
We study the energy landscapes of particles with short-range attractive interactions as the range of the interactions increases. Starting with the set of local minima for $6leq Nleq12$ hard spheres that are sticky, i.e. they interact only when their surfaces are exactly in contact, we use numerical continuation to evolve the local minima (clusters) as the range of the potential increases, using both the Lennard-Jones and Morse families of interaction potentials. As the range increases, clusters merge, until at long ranges only one or two clusters are left. We compare clusters obtained by continuation with different potentials and find that for short and medium ranges, up to about 30% of particle diameter, the continued clusters are nearly identical, both within and across families of potentials. For longer ranges the clusters vary significantly, with more variation between families of potentials than within a family. We analyze the mechanisms behind the merge events, and find that most rearrangements occur when a pair of non-bonded particles comes within the range of the potential. An exception occurs for nonharmonic clusters, those that have a zero eigenvalue in their Hessian, which undergo a more global rearrangement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا