ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar activity induced by active structures (eg, spots, faculae) is known to strongly impact the radial velocity time series. It then limits the detection of small planetary RV signals (eg, an Earth-mass planet in the habitable zone of a solar-like star). In previous papers, we studied the detectability of such planets around the Sun seen as an edge-on star. For that purpose, we computed the RV and photometric variations induced by solar magnetic activity, using all active structures observed over one entire cycle. Our goal is to perform similar studies on stars with different physical and geometrical properties. As a first step, we focus on Sun-like stars seen with various inclinations, and on estimating detection capabilities with forthcoming instruments. To do so, we first parameterize the solar active structures with the most realistic pattern so as to obtain results consistent with the observed ones. We simulate the growth, evolution and decay of solar spots, faculae and network, using parameters and empiric laws derived from solar observations and literature. We generate the corresponding structure lists over a full solar cycle. We then build the resulting spectra and deduce the RV and photometric variations for a `Sun seen with various inclinations. The produced RV signal takes into account the photometric contribution of structures as well as the attenuation of the convective blueshift. The comparison between our simulated activity pattern and the observed one validates our model. We show that the inclination of the stellar rotation axis has a significant impact on the time series. RV long-term amplitudes as well as short-term jitters are significantly reduced when going from edge-on to pole-on configurations. Assuming spin-orbit alignment, the optimal configuration for planet detection is an inclined star (i~45{deg}).
Context. {beta} Pictoris b is one of the most studied objects nowadays since it was identified with VLT/NaCo as a bona-fide exoplanet with a mass of about 9 times that of Jupiter at an orbital separation of 8-9 AU. The link between the planet and the dusty disk is unambiguously attested and this system provides an opportunity to study the disk/planet interactions and to constrain formation and evolutionary models of gas giant planets. Still, {beta} Pictoris b had never been confirmed with other telescopes so far. Aims. We aimed at an independent confirmation using a different instrument. Methods. We retrieved archive images from Gemini South obtained with the instrument NICI, which is designed for high contrast imaging. The observations combine coronagraphy and angular differential imaging and were obtained at three epochs in Nov. 2008, Dec. 2009 and Dec. 2010. Results. We report the detection with NICI of the planet {beta} Pictoris b in Dec. 2010 images at a separation of 404 pm 10 mas and P A = 212.1 pm 0.7{deg} . It is the first time this planet is observed with a telescope different than the VLT.
We recently reported on the detection of a possible planetary-mass companion to Beta Pictoris at a projected separation of 8 AU from the star, using data taken in November 2003 with NaCo, the adaptive-optics system installed on the Very Large Telesco pe UT4. Eventhough no second epoch detection was available, there are strong arguments to favor a gravitationally bound companion rather than a background object. If confirmed and located at a physical separation of 8 AU, this young, hot (~1500 K), massive Jovian companion (~8 Mjup) would be the closest planet to its star ever imaged, could be formed via core-accretion, and could explain the main morphological and dynamical properties of the dust disk. Our goal was to return to Beta Pic five years later to obtain a second-epoch observation of the companion or, in case of a non-detection, constrain its orbit. Deep adaptive-optics L-band direct images of Beta Pic and Ks-band Four-Quadrant-Phase-Mask (4QPM) coronagraphic images were recorded with NaCo in January and February 2009. We also use 4QPM data taken in November 2004. No point-like signal with the brightness of the companion candidate (apparent magnitudes L=11.2 or Ks ~ 12.5) is detected at projected distances down to 6.5 AU from the star in the 2009 data. As expected, the non-detection does not allow to rule out a background object; however, we show that it is consistent with the orbital motion of a bound companion that got closer to the star since first observed in 2003 and that is just emerging from behind the star at the present epoch. We place strong constraints on the possible orbits of the companion and discuss future observing prospects.
Aims: Stellar activity may complicate the analysis of high-precision radial-velocity spectroscopic data when looking for exoplanets signatures. We aim at quantifying the impact of stellar spots on stars with various spectral types and rotational velo cities and comparing the simulations with data obtained with the HARPS spectrograph. Methods: We have developed detailed simulations of stellar spots and estimated their effects on a number of observables commonly used in the analysis of radial-velocity data when looking for extrasolar planets, such as radial-velocity curves, cross-correlation functions, bisector spans and photometric curves. The computed stellar spectra are then analyzed in the same way as when searching for exoplanets. Results: 1) A first grid of simulation results is built for F-K type stars, with different stellar and spot properties. 2) It is shown quantitatively that star spots with typical sizes of 1% can mimic both radial-velocity curves and the bisector behavior of short-period giant planets around G-K type stars with a vsini lower than the spectrograph resolution. For stars with intermediate vsini, smaller spots may produce similar features. In these cases, additional observables (e.g., photometry, spectroscopic diagnostics) are mandatory to confirm the presence of short-period planets. We show that, in some cases, photometric variations may not be enough to clearly rule out spots as explanations of the observed radial-velocity variations. This is particularly important when searching for super-Earth planets. 3) It is also stressed that quantitative values obtained for radial-velocity and bisector span amplitudes depend strongly on the detailed star properties, on the spectrograph used, on the set of lines used, and on the way they are measured.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا