ترغب بنشر مسار تعليمي؟ اضغط هنا

Until now it has been impossible to observationally measure how star cluster scale height evolves beyond 1Gyr as only small samples have been available. Here we establish a novel method to determine the scale height of a cluster sample using modelled distributions and Kolmogorov-Smirnov tests. This allows us to determine the scale height with a 25% accuracy for samples of 38 clusters or more. We apply our method to investigate the temporal evolution of cluster scale height, using homogeneously selected sub-samples of Kharchenko et al. (MWSC), Dias et al. (DAML02), WEBDA, and Froebrich et al. (FSR). We identify a linear relationship between scale height and log(age/yr) of clusters, considerably different from field stars. The scale height increases from about 40pc at 1Myr to 75pc at 1Gyr, most likely due to internal evolution and external scattering events. After 1Gyr, there is a marked change of the behaviour, with the scale height linearly increasing with log(age/yr) to about 550pc at 3.5Gyr. The most likely interpretation is that the surviving clusters are only observable because they have been scattered away from the mid-plane in their past. A detailed understanding of this observational evidence can only be achieved with numerical simulations of the evolution of cluster samples in the Galactic Disk. Furthermore, we find a weak trend of an age-independent increase in scale height with galactocentric distance. There are no significant temporal or spatial variations of the cluster distribution zero point. We determine the Suns vertical displacement from the Galactic Plane as $Z_odot=18.5pm1.2$pc.
Determining star cluster distances is essential to analyse their properties and distribution in the Galaxy. In particular it is desirable to have a reliable, purely photometric distance estimation method for large samples of newly discovered cluster candidates e.g. from 2MASS, UKIDSS-GPS and VISTA-VVV. Here, we establish an automatic method to estimate distances and reddening from NIR photometry alone, without the use of isochrone fitting. We employ a decontamination procedure of JHK photometry to determine the density of stars foreground to clusters and a galactic model to estimate distances. We then calibrate the method using clusters with known properties. This allows us to establish distance estimates with better than 40% accuracy. We apply our method to determine the extinction and distance values to 378 known open clusters and 397 cluster candidates from the list of Froebrich, Scholz and Raftery (2003). We find that the sample is biased towards clusters of a distance of approximately 3kpc, with typical distances between 2 and 6kpc. Using the cluster distances and extinction values, we investigate how the average extinction per kiloparsec distance changes as a function of Galactic longitude. We find a systematic dependence that can be approximated by A_H(l)[mag/kpc]=0.10+0.001*|l-180deg|/deg for regions more than 60deg from the Galactic Centre.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا