ترغب بنشر مسار تعليمي؟ اضغط هنا

50 - Anna Pancoast 2014
We present an improved and expanded simply parameterized phenomenological model of the broad line region (BLR) in active galactic nuclei (AGN) for modeling reverberation mapping data. By modeling reverberation mapping data directly, we can constrain the geometry and dynamics of the BLR and measure the black hole mass without relying on the normalization factor needed in the traditional analysis. For realistic simulated reverberation mapping datasets of high-quality, we can recover the black hole mass to $0.05-0.25$ dex uncertainty and distinguish between dynamics dominated by elliptical orbits and inflowing gas. While direct modeling of the integrated emission line light curve allows for measurement of the mean time lag, other details of the geometry of the BLR are better constrained by the full spectroscopic dataset of emission line profiles. We use this improved model of the BLR to explore possible sources of uncertainty in measurements of the time lag using cross-correlation function (CCF) analysis and in measurements of the black hole mass using the virial product. Sampling the range of geometries and dynamics in our model of the BLR suggests that the theoretical uncertainty in black hole masses measured using the virial product is on the order of 0.25 dex. These results support the use of the CCF to measure time lags and the virial product to measure black hole masses when direct modeling techniques cannot be applied, provided the uncertainties associated with the interpretation of the results are taken into account.
We present dynamical modeling of the broad line region (BLR) for a sample of five Seyfert 1 galaxies using reverberation mapping data taken by the Lick AGN Monitoring Project in 2008. By modeling the AGN continuum light curve and H$beta$ line profile s directly we are able to constrain the geometry and kinematics of the BLR and make a measurement of the black hole mass that does not depend upon the virial factor, $f$, needed in traditional reverberation mapping analysis. We find that the geometry of the BLR is generally a thick disk viewed close to face-on. While the H$beta$ emission is found to come preferentially from the far side of the BLR, the mean size of the BLR is consistent with the lags measured with cross-correlation analysis. The BLR kinematics are found to be consistent with either inflowing motions or elliptical orbits, often with some combination of the two. We measure black hole masses of $log_{10}(M_{rm,BH}/M_odot)=6.62^{+0.10}_{-0.13}$ for Arp 151, $7.42^{+0.26}_{-0.27}$ for Mrk 1310, $7.51^{+0.23}_{-0.14}$ for NGC 5548, $6.42^{+0.24}_{-0.18}$ for NGC 6814, and $6.99^{+0.32}_{-0.25}$ for SBS 1116+583A. The $f$ factors measured individually for each AGN are found to correlate with inclination angle, although not with $M_{rm,BH}$, $L_{5100}$, or FWHM/$sigma$ of the emission line profile.
The prominent broad Fe II emission blends in the spectra of active galactic nuclei have been shown to vary in response to continuum variations, but past attempts to measure the reverberation lag time of the optical Fe II lines have met with only limi ted success. Here we report the detection of Fe II reverberation in two Seyfert 1 galaxies, NGC 4593 and Mrk 1511, based on data from a program carried out at Lick Observatory in Spring 2011. Light curves for emission lines including H-beta and Fe II were measured by applying a fitting routine to decompose the spectra into several continuum and emission-line components, and we use cross-correlation techniques to determine the reverberation lags of the emission lines relative to V-band light curves. In both cases the measured lag (t_cen) of Fe II is longer than that of H-beta, although the inferred lags are somewhat sensitive to the choice of Fe II template used in the fit. For spectral decompositions done using the Fe II template of Veron-Cetty et al. (2004), we find t_cen(Fe II)/t_cen(H-beta) = 1.9+-0.6 in NGC 4593 and 1.5+-0.3 in Mrk 1511. The detection of highly correlated variations between Fe II and continuum emission demonstrates that the Fe II emission in these galaxies originates in photoionized gas, located predominantly in the outer portion of the broad-line region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا