ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a mathematical model which explains and interprets a novel form of short-term potentiation, which was found to be use-, but not time-dependent, in experiments done on Lymnaea neurons. The high degree of potentiation is explained using a mo del of synaptic metaplasticity, while the use-dependence (which is critically reliant on the presence of kinase in the experiment) is explained using a model of a stochastic and bistable biological switch.
361 - Pranay Goel , Anita Mehta 2013
Cells of almost all solid tissues are connected with gap junctions which permit the direct transfer of ions and small molecules, integral to regulating coordinated function in the tissue. The pancreatic islets of Langerhans are responsible for secret ing the hormone insulin in response to glucose stimulation. Gap junctions are the only electrical contacts between the beta-cells in the tissue of these excitable islets. It is generally believed that they are responsible for synchrony of the membrane voltage oscillations among beta-cells, and thereby pulsatility of insulin secretion. Most attempts to understand connectivity in islets are often interpreted, bottom-up, in terms of measurements of gap junctional conductance. This does not, however explain systematic changes, such as a diminished junctional conductance in type 2 diabetes. We attempt to address this deficit via the model presented here, which is a learning theory of gap junctional adaptation derived with analogy to neural systems. Here, gap junctions are modelled as bonds in a beta-cell network, that are altered according to homeostatic rules of plasticity. Our analysis reveals that it is nearly impossible to view gap junctions as homogeneous across a tissue. A modified view that accommodates heterogeneity of junction strengths in the islet can explain why, for example, a loss of gap junction conductance in diabetes is necessary for an increase in plasma insulin levels following hyperglycemia.
41 - Anita Mehta 2012
We present a model of predatory traders interacting with each other in the presence of a central reserve (which dissipates their wealth through say, taxation), as well as inflation. This model is examined on a network for the purposes of correlating complexity of interactions with systemic risk. We suggest the use of selective networking to enhance the survival rates of arbitrarily chosen traders. Our conclusions show that networking with doomed traders is the most risk-free scenario, and that if a trader is to network with peers, it is far better to do so with those who have less intrinsic wealth than himself to ensure individual, and perhaps systemic stability.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا