ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine the propagation of several CMEs with well-observed flux rope signatures in the field of view of the SECCHI coronagraphs aboard the STEREO satellites using the GCS fitting method of Thernisien, Vourlidas & Howard (2009). We find that the ma nner in which they propagate is approximately self-similar; i.e., the ratio ($kappa$) of the flux rope minor radius to its major radius remains approximately constant with time. We use this observation of self-similarity to draw conclusions regarding the local pitch angle ($gamma$) of the flux rope magnetic field and the misalignment angle ($chi$) between the current density ${mathbf J}$ and the magnetic field ${mathbf B}$. Our results suggest that the magnetic field and current configurations inside flux ropes deviate substantially from a force-free state in typical coronagraph fields of view, validating the idea of CMEs being driven by Lorentz self-forces.
In this paper, we demonstrate that CME-driven shocks can be detected in white light coronagraph images and in which properties such as the density compression ratio and shock direction can be measured. Also, their propagation direction can be deduced via simple modeling. We focused on CMEs during the ascending phase of solar cycle 23 when the large-scale morphology of the corona was simple. We selected events which were good candidates to drive a shock due to their high speeds (V>1500 km/s). The final list includes 15 CMEs. For each event, we calibrated the LASCO data, constructed excess mass images and searched for indications of faint and relatively sharp fronts ahead of the bright CME front. We found such signatures in 86% (13/15) of the events and measured the upstream/downstream densities to estimate the shock strength. Our values are in agreement with theoretical expectations and show good correlations with the CME kinetic energy and momentum. Finally, we used a simple forward modeling technique to estimate the 3D shape and orientation of the white light shock features. We found excellent agreement with the observed density profiles and the locations of the CME source regions. Our results strongly suggest that the observed brightness enhancements result from density enhancements due to a bow-shock structure driven by the CME.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا