ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent experimental results for the ratios of the branching fractions of the decays $bar{B} to D^{(*)} tau bar u$ and $bar{B} to D^{(*)} mu bar u$ came as a surprise and lead to a discussion of possibility of testing New Physics beyond the Standard M odel through these modes. We show that these decay channels can provide us with good constraints on New Physics and several New Physics cases are favored by the present experimental data. In order to discriminate various New Physics scenarios, we examine the $q^2$ distributions and estimate the sensitivity of this potential measurement at the SuperKEKB/Belle II experiment.
We study potential New Physics effects in the $bar B to D^{(*)} tau bar u$ decays. As a particular example of New Physics models we consider the class of leptoquark models and put the constraints on the leptoquark couplings using the recently measure d ratios $R(D^{(*)})=BR(bar B to D^{(*)} tau bar u)/BR(bar B to D^{(*)} mu bar u)$. For consistency, some of the constraints are compared with the ones coming from the current experimental bound on $BR(B to X_s u bar u)$. In order to discriminate various New Physics scenarios, we examine the correlations between different observables that can be measured in future.
We investigate the K1--> K pi pi strong interaction decays. Using the 3P0 quark-pair-creation model to derive the basic parametrization, we discuss in detail how to obtain the various partial wave amplitudes into the possible quasi-two-body decay cha nnels as well as their relative phases from the currently available experimental data. We obtain the K1 mixing angle to be thetaK1= 60 deg, in agreement with previous works. Our study can be applied to extract the information needed for the photon polarization determination of the radiative B--> K1 gamma decay.
Recently the radiative B decay to the strange axial-vector mesons, B --> K1(1270) gamma, has been observed with rather large branching ratio. This process is particularly interesting as the subsequent K1 decay into its three body final state allows u s to determine the polarization of the photon, which is mostly left- (right-)handed for Bbar (B) in the SM while various new physics models predict additional right- (left-)handed components. A new method is proposed to determine the polarization, exploiting the full Dalitz plot distribution, which seems to reduce significantly the statistical errors. This polarization measurement requires however a detailed knowledge of the K1--> K pi pi strong interaction decays, namely, the various partial wave amplitudes into the several possible quasi two-body channels, as well as their relative phases. The pattern of partial waves is especially complex for the K1(1270). We attempt to obtain the information through the combination of an experimental input and a theoretical one, provided by the 3P0 quark-pair-creation model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا