ترغب بنشر مسار تعليمي؟ اضغط هنا

47 - Andrew M. Pitts 2014
Staton has shown that there is an equivalence between the category of presheaves on (the opposite of) finite sets and partial bijections and the category of nominal restriction sets: see [2, Exercise 9.7]. The aim here is to see that this extends to an equivalence between the category of cubical sets introduced in [1] and a category of nominal sets equipped with a 01-substitution operation. It seems to me that presenting the topos in question equivalently as 01-substitution sets rather than cubical sets will make it easier (and more elegant) to carry out the constructions and calculations needed to build the intended univalent model of intentional constructive type theory.
This paper is concerned with the form of typed name binding used by the FreshML family of languages. Its characteristic feature is that a name binding is represented by an abstract (name,value)-pair that may only be deconstructed via the generation o f fresh bound names. The paper proves a new result about what operations on names can co-exist with this construct. In FreshML the only observation one can make of names is to test whether or not they are equal. This restricted amount of observation was thought necessary to ensure that there is no observable difference between alpha-equivalent name binders. Yet from an algorithmic point of view it would be desirable to allow other operations and relations on names, such as a total ordering. This paper shows that, contrary to expectations, one may add not just ordering, but almost any relation or numerical function on names without disturbing the fundamental correctness result about this form of typed name binding (that object-level alpha-equivalence precisely corresponds to contextual equivalence at the programming meta-level), so long as one takes the state of dynamically created names into account.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا