ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the possible effects of gravitational lensing by globular clusters on gravitational waves from asymmetric neutron stars in our galaxy. In the lensing of gravitational waves, the long wavelength, compared with the usual case of optical len sing, can lead to the geometrical optics approximation being invalid, in which case a wave optical solution is necessary. In general, wave optical solutions can only be obtained numerically. We describe a computational method that is particularly well suited to numerical wave optics. This method enables us to compare the properties of several lens models for globular clusters without ever calling upon the geometrical optics approximation, though that approximation would sometimes have been valid. Finally, we estimate the probability that lensing by a globular cluster will significantly affect the detection, by ground-based laser interferometer detectors such as LIGO, of gravitational waves from an asymmetric neutron star in our galaxy, finding that the probability is insignificantly small.
The software tool GRworkbench is an ongoing project in visual, numerical General Relativity at The Australian National University. Recently, the numerical differential geometric engine of GRworkbench has been rewritten using functional programming te chniques. By allowing functions to be directly represented as program variables in C++ code, the functional framework enables the mathematical formalism of Differential Geometry to be more closely reflected in GRworkbench . The powerful technique of `automatic differentiation has replaced numerical differentiation of the metric components, resulting in more accurate derivatives and an order-of-magnitude performance increase for operations relying on differentiation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا