ترغب بنشر مسار تعليمي؟ اضغط هنا

We present randomized algorithms to compute the sumset (Minkowski sum) of two integer sets, and to multiply two univariate integer polynomials given by sparse representations. Our algorithm for sumset has cost softly linear in the combined size of th e inputs and output. This is used as part of our sparse multiplication algorithm, whose cost is softly linear in the combined size of the inputs, output, and the sumset of the supports of the inputs. As a subroutine, we present a new method for computing the coefficients of a sparse polynomial, given a set containing its support. Our multiplication algorithm extends to multivariate Laurent polynomials over finite fields and rational numbers. Our techniques are based on sparse interpolation algorithms and results from analytic number theory.
Given a straight-line program whose output is a polynomial function of the inputs, we present a new algorithm to compute a concise representation of that unknown function. Our algorithm can handle any case where the unknown function is a multivariate polynomial, with coefficients in an arbitrary finite field, and with a reasonable number of nonzero terms but possibly very large degree. It is competitive with previously known sparse interpolation algorithms that work over an arbitrary finite field, and provides an improvement when there are a large number of variables.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا