ترغب بنشر مسار تعليمي؟ اضغط هنا

Using rough path theory, we provide a pathwise foundation for stochastic It^o integration, which covers most commonly applied trading strategies and mathematical models of financial markets, including those under Knightian uncertainty. To this end, w e introduce the so-called Property (RIE) for c`adl`ag paths, which is shown to imply the existence of a c`adl`ag rough path and of quadratic variation in the sense of Follmer. We prove that the corresponding rough integrals exist as limits of left-point Riemann sums along a suitable sequence of partitions. This allows one to treat integrands of non-gradient type, and gives access to the powerful stability estimates of rough path theory. Additionally, we verify that (path-dependent) functionally generated trading strategies and Covers universal portfolio are admissible integrands, and that Property (RIE) is satisfied by both (Young) semimartingales and typical price paths.
Based on a rough path foundation, we develop a model-free approach to stochastic portfolio theory (SPT). Our approach allows to handle significantly more general portfolios compared to previous model-free approaches based on Follmer integration. With out the assumption of any underlying probabilistic model, we prove pathwise Master formulae analogous to those of classical SPT, describing the growth of wealth processes associated to functionally generated portfolios relative to the market portfolio. We show that the appropriately scaled asymptotic growth rate of a far reaching generalization of Covers universal portfolio based on controlled paths coincides with that of the best retrospectively chosen portfolio within this class. We provide several novel results concerning rough integration, and highlight the advantages of the rough path approach by considering (non-functionally generated) log-optimal portfolios in an ergodic It^o diffusion setting.
We investigate rough differential equations with a time-dependent reflecting lower barrier, where both the driving (rough) path and the barrier itself may have jumps. Assuming the driving signals allow for Young integration, we provide existence, uni queness and stability results. When the driving signal is a c`adl`ag $p$-rough path for $p in [2,3)$, we establish existence to general reflected rough differential equations, as well as uniqueness in the one-dimensional case.
102 - Andrew L. Allan 2020
We consider the filtering of continuous-time finite-state hidden Markov models, where the rate and observation matrices depend on unknown time-dependent parameters, for which no prior or stochastic model is available. We quantify and analyze how the induced uncertainty may be propagated through time as we collect new observations, and used to simultaneously provide robust estimates of the hidden signal and to learn the unknown parameters, via techniques based on pathwise filtering and new results on the optimal control of rough differential equations.
We study the problem of pathwise stochastic optimal control, where the optimization is performed for each fixed realisation of the driving noise, by phrasing the problem in terms of the optimal control of rough differential equations. We investigate the degeneracy phenomenon induced by directly controlling the coefficient of the noise term, and propose a simple procedure to resolve this degeneracy whilst retaining dynamic programming. As an application, we use pathwise stochastic control in the context of stochastic filtering to construct filters which are robust to parameter uncertainty, demonstrating an original application of rough path theory to statistics.
We consider ergodic backward stochastic differential equations in a discrete time setting, where noise is generated by a finite state Markov chain. We show existence and uniqueness of solutions, along with a comparison theorem. To obtain this result, we use a Nummelin splitting argument to obtain ergodicity estimates for a discrete time Markov chain which hold uniformly under suitable perturbations of its transition matrix. We conclude with an application of this theory to a treatment of an ergodic control problem.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا