ترغب بنشر مسار تعليمي؟ اضغط هنا

An open quantum system that is put in contact with an infinite bath is pushed towards equilibrium, while the state of the bath remains unchanged. If the bath is finite, the open system still relaxes to equilibrium, but it induces a dynamical evolutio n of the bath state. In this work, we extend the weak-coupling master equation approach of open quantum systems interacting with finite baths to include imprecise measurements of the bath energy. Those imprecise measurements are not only always the case in practice, but they also unify the theoretical description. We investigate the circumstances under which our equation reduces to the more standard Born-Markov-secular master equation. As a result, we obtain a hierarchy of master equations that improve their accuracy by including more dynamical information about the bath. We discuss this formalism in detail for a particular non-interacting environment where the Boltzmann temperature and the Kubo-Martin-Schwinger relation naturally arise. Finally, we apply our hierarchy of master equations to study the central spin model.
We study the storage capacity of quantum neural networks (QNNs) described as completely positive trace preserving (CPTP) maps, which act on an $N$-dimensional Hilbert space. We demonstrate that QNNs can store up to $N$ linearly independent pure state s and provide the structure of the corresponding maps. While the storage capacity of a classical Hopfield network scales linearly with the number of neurons, we show that QNNs can store an exponential number of linearly independent states. We estimate, employing the Gardner program, the relative volume of CPTP maps with $M$ stationary states. The volume decreases exponentially with $M$ and shrinks to zero for $Mgeq N+1$. We generalize our results to QNNs storing mixed states as well as input-output relations for feed-forward QNNs. Our approach opens the path to relate storage properties of QNNs to the quantum properties of the input-output states. This paper is dedicated to the memory of Peter Wittek.
Describing open quantum systems far from equilibrium is challenging, in particular when the environment is mesoscopic, when it develops nonequilibrium features during the evolution, or when the memory effects cannot be disregarded. Here, we derive a master equation that explicitly accounts for system-bath correlations and includes, at a coarse-grained level, a dynamically evolving bath. Such a master equation applies to a wide variety of physical systems including those described by Random Matrix Theory or the Eigenstate Thermalization Hypothesis. We obtain a local detailed balance condition which, interestingly, does not forbid the emergence of stable negative temperature states in unison with the definition of temperature through the Boltzmann entropy. We benchmark the master equation against the exact evolution and observe a very good agreement in a situation where the conventional Born-Markov-secular master equation breaks down. Interestingly, the present description of the dynamics is robust and it remains accurate even if some of the assumptions are relaxed. Even though our master equation describes a dynamically evolving bath not described by a Gibbs state, we provide a consistent nonequilibrium thermodynamic framework and derive the first and second law as well as the Clausius inequality. Our work paves the way for studying a variety of nanoscale quantum technologies including engines, refrigerators, or heat pumps beyond the conventionally employed assumption of a static thermal bath.
Time crystals are genuinely non-equilibrium quantum phases of matter that break time-translational symmetry. While in non-equilibrium closed systems time crystals have been experimentally realized, it remains an open question whether or not such a ph ase survives when systems are coupled to an environment. Although dissipation caused by the coupling to a bath may stabilize time crystals in some regimes, the introduction of incoherent noise may also destroy the time crystalline order. Therefore, the mechanisms that stabilize a time crystal in open and closed systems are not necessarily the same. Here, we propose a way to identify an open system time crystal based on a single object: the Floquet propagator. Armed with such a description we show time-crystalline behavior in an explicitly short-range interacting open system and demonstrate the crucial role of the nature of the decay processes.
Heat rectifiers are systems that conduct heat asymmetrically for forward and reversed temperature gradients. Here, we present an analytical study of heat rectification in linear quantum systems. We demonstrate that asymmetric heat currents can be ind uced in a linear system only if it is dynamically driven. The rectification can be further enhanced, even achieving maximal performance, by detuning the oscillators of the driven network. Finally, we demonstrate the feasibility of such driven harmonic network to work as a thermal transistor, quantifying its efficiency through the dynamical amplification factor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا