ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the influence of particle shape anisotropy on the occurrence of avalanches in sheared granular media. We use molecular dynamic simulations to calculate the relative movement of two tectonic plates. % with transform boundaries. Our model cons iders irregular polygonal particles constituting the material within the shear zone. We find that the magnitude of the avalanches is approximately independent on particle shape and in good agreement with the Gutenberg-Richter law, but the aftershock sequences are strongly influenced by the particle anisotropy yielding variations on the exponent characterizing the empirical Omoris law. Our findings enable one to identify the presence of anisotropic particles at the macro-mechanical level only by observing the avalanche sequences of real faults. In addition, we calculate the probability of occurrence of an avalanche for given values of stiffness or frictional strength and observe also a significant influence of the particle anisotropy.
We present a detailed analysis of the bounds on the integration step in Discrete Element Method (DEM) for simulating collisions and shearing of granular assemblies. We show that, in the numerical scheme, the upper limit for the integration step, usua lly taken from the average time $t_c$ of one contact, is in fact not sufficiently small to guarantee numerical convergence of the system during relaxation. In particular, we study in detail how the kinetic energy decays during the relaxation stage and compute the correct upper limits for the integration step, which are significantly smaller than the ones commonly used. In addition, we introduce an alternative approach, based on simple relations to compute the frictional forces, that converges even for integration steps above the upper limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا