ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrophysical shocks are often collisionless shocks. An open question about collisionless shocks is whether electrons and ions each establish their own post-shock temperature, or whether they quickly equilibrate in the shock region. Here we provide s imple relations for the minimal amount of equilibration to expect. The basic assumption is that the enthalpy-flux of the electrons is conserved separately, but that all particle species should undergo the same density jump across the the shock. This assumption results in an analytic treatment of electron-ion equilibration that agrees with observations of collisionless shocks: at low Mach numbers ($<2$) the electrons and ions are close to equilibration, whereas for Mach numbers above $M sim 60$ the electron-ion temperature ratio scales with the particle masses $T_e/T_i = m_e/m_i$. In between these two extremes the electron-ion temperature ratio scales as $T_e/T_i propto 1/M_s^2$. This relation also hold if adiabatic compression of the electrons is taken into account. For magnetised plasmas the compression is governed by the magnetosonic Mach number, whereas the electron-ion temperatures are governed by the sonic Mach number. The derived equations are in agreement with observational data at low Mach numbers, but for supernova remnants the relation requires that the inferred Mach numbers for the observations are over- estimated, perhaps as a result of upstream heating in the cosmic-ray precursor. In addition to predicting a minimal electron/ion temperature ratio, we also heuristically incorporate ion-electron heat exchange at the shock, quantified with a dimensionless parameter ${xi}$. Comparing the model to existing observations in the solar system and supernova remnants suggests that the data are best described by ${xi} sim 5$ percent. (Abridged abstract.)
We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and g amma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا