ترغب بنشر مسار تعليمي؟ اضغط هنا

The subject of this paper is the scattering of a very intense laser pulse (intensity $Isim10^{21};{mathrm{W/cm^2}}$) on relativistic electrons with Lorentz factor between 10 and 45. The laser pulse is modeled by a plane wave with finite length and th e calculations are performed within the framework of the classical electrodynamics, which is valid for the field intensity and range of electron energies we consider. For a pulse with the central wavelength $lambda=1060;{mathrm{nm}}$ and circular polarization, we study systematically the angular distribution of the emitted radiation, $dW/dOmega$, in its dependence on the electron energy for two collision geometries: the head-on collision (counterpropagating electron and laser pulse), and the 90 degrees collision (the initial electron momentum orthogonal to the laser propagation direction). We investigate the relation between $dW/dOmega$ and the trajectory followed by the electron velocity during the laser pulse and, for the case of a short laser pulse, we discuss the carrier-envelope phase effects. We also present, for the two mentioned geometries, an analysis of the polarization of the emitted radiation and a comparison of the results predicted by the exact classical formula with a high-energy approximation of it.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا