ترغب بنشر مسار تعليمي؟ اضغط هنا

We realize fast transport of ions in a segmented micro-structured Paul trap. The ion is shuttled over a distance of more than 10^4 times its groundstate wavefunction size during only 5 motional cycles of the trap (280 micro meter in 3.6 micro seconds ). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10 $pm$ 0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.
It is expected that ion trap quantum computing can be made scalable through protocols that make use of transport of ion qubits between sub-regions within the ion trap. In this scenario, any magnetic field inhomogeneity the ion experiences during the transport, may lead to dephasing and loss of fidelity. Here we demonstrate how to measure, and compensate for, magnetic field gradients inside a segmented ion trap, by transporting a single ion over variable distances. We attain a relative magnetic field sensitivity of Delta B/B_0 ~ 5*10^{-7} over a test distance of 140 micro m, which can be extended to the mm range, still with sub micro m resolution. A fast experimental sequence is presented, facilitating its use as a magnetic field gradient calibration routine, and it is demonstrated that the main limitation is the quantum shot noise.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا