ترغب بنشر مسار تعليمي؟ اضغط هنا

Ring exchange is an elementary interaction for modeling unconventional topological matters which hold promise for efficient quantum information processing. We report the observation of four-body ring-exchange interactions and the topological properti es of anyonic excitations within an ultracold atom system. A minimum toric code Hamiltonian in which the ring exchange is the dominant term, was implemented by engineering a Hubbard Hamiltonian that describes atomic spins in disconnected plaquette arrays formed by two orthogonal superlattices. The ring-exchange interactions were resolved from the dynamical evolutions in the spin orders, matching well with the predicted energy gaps between two anyonic excitations of the spin system. A braiding operation was applied to the spins in the plaquettes and an induced phase $1.00(3)pi$ in the four-spin state was observed, confirming $frac{1}{2}$-anynoic statistics. This work represents an essential step towards studying topological matters with many-body systems and the applications in quantum computation and simulation.
Ultracold atoms in optical lattices offer a great promise to generate entangled states for scalable quantum information processing owing to the inherited long coherence time and controllability over a large number of particles. We report on the gener ation, manipulation and detection of atomic spin entanglement in an optical superlattice. Employing a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated by microwave pulses with near unitary fidelities. Spin entanglement of the two atoms in the double wells of the superlattice is generated via dynamical evolution governed by spin superexchange. By observing collisional atom loss with in-situ absorption imaging we measure spin correlations of atoms inside the double wells and obtain the lower boundary of entanglement fidelity as $0.79pm0.06$, and the violation of a Bells inequality with $S=2.21pm 0.08$. The above results represent an essential step towards scalable quantum computation with ultracold atoms in optical lattices.
The heralded generation of entangled states is a long-standing goal in quantum information processing, because it is indispensable for a number of quantum protocols. Polarization entangled photon pairs are usually generated through spontaneous parame tric down-conversion, but the emission is probabilistic. Their applications are generally accompanied by post-selection and destructive photon detection. Here, we report a source of entanglement generated in an event-ready manner by conditioned detection of auxiliary photons. This scheme benefits from the stable and robust properties of spontaneous parametric down-conversion and requires only modest experimental efforts. It is flexible and allows the preparation efficiency to be significantly improved by using beamsplitters with different transmission ratios. We have achieved a fidelity better than 87% and a state preparation efficiency of 45% for the source. This could offer promise in essential photonics-based quantum information tasks, and particularly in enabling optical quantum computing by reducing dramatically the computational overhead.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا