ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper addresses the question of predicting when a positive self-similar Markov process X attains its pathwise global supremum or infimum before hitting zero for the first time (if it does at all). This problem has been studied in Glover et al. ( 2013) under the assumption that X is a positive transient diffusion. We extend their result to the class of positive self-similar Markov processes by establishing a link to Baurdoux and van Schaik (2013), where the same question is studied for a Levy process drifting to minus infinity. The connection to Baurdoux and van Schaik (2013) relies on the so-called Lamperti transformation which links the class of positive self-similar Markov processes with that of Levy processes. Our approach will reveal that the results in Glover et al. (2013) for Bessel processes can also be seen as a consequence of self-similarity.
We analyze the optimal dividend payment problem in the dual model under constant transaction costs. We show, for a general spectrally positive L{e}vy process, an optimal strategy is given by a $(c_1,c_2)$-policy that brings the surplus process down t o $c_1$ whenever it reaches or exceeds $c_2$ for some $0 leq c_1 < c_2$. The value function is succinctly expressed in terms of the scale function. A series of numerical examples are provided to confirm the analytical results and to demonstrate the convergence to the no-transaction cost case, which was recently solved by Bayraktar et al. (2013).
For a positive self-similar Markov process, X, we construct a local time for the random set, $Theta$, of times where the process reaches its past supremum. Using this local time we describe an exit system for the excursions of X out of its past supre mum. Next, we define and study the ladder process (R,H) associated to a positive self-similar Markov process X, namely a bivariate Markov process with a scaling property whose coordinates are the right inverse of the local time of the random set $Theta$ and the process X sampled on the local time scale. The process (R,H) is described in terms of a ladder process linked to the L{e}vy process associated to X via Lampertis transformation. In the case where X never hits 0, and the upward ladder height process is not arithmetic and has finite mean, we prove the finite-dimensional convergence of (R,H) as the starting point of X tends to 0. Finally, we use these results to provide an alternative proof to the weak convergence of X as the starting point tends to 0. Our approach allows us to address two issues that remained open in Caballero and Chaumont [Ann. Probab. 34 (2006) 1012-1034], namely, how to remove a redundant hypothesis and how to provide a formula for the entrance law of X in the case where the underlying L{e}vy process oscillates.
We revisit the dividend payment problem in the dual model of Avanzi et al. ([2], [1], and [3]). Using the fluctuation theory of spectrally positive L{e}vy processes, we give a short exposition in which we show the optimality of barrier strategies for all such L{e}vy processes. Moreover, we characterize the optimal barrier using the functional inverse of a scale function. We also consider the capital injection problem of [3] and show that its value function has a very similar form to the one in which the horizon is the time of ruin.
Scale functions play a central role in the fluctuation theory of spectrally negative Levy processes and often appear in the context of martingale relations. These relations are often complicated to establish requiring excursion theory in favour of It ^o calculus. The reason for the latter is that standard It^o calculus is only applicable to functions with a sufficient degree of smoothness and knowledge of the precise degree of smoothness of scale functions is seemingly incomplete. The aim of this article is to offer new results concerning properties of scale functions in relation to the smoothness of the underlying Levy measure. We place particular emphasis on spectrally negative Levy processes with a Gaussian component and processes of bounded variation. An additional motivation is the very intimate relation of scale functions to renewal functions of subordinators. The results obtained for scale functions have direct implications offering new results concerning the smoothness of such renewal functions for which there seems to be very little existing literature on this topic.
We consider a stochastic fluid queue served by a constant rate server and driven by a process which is the local time of a certain Markov process. Such a stochastic system can be used as a model in a priority service system, especially when the time scales involved are fast. The input (local time) in our model is always singular with respect to the Lebesgue measure which in many applications is ``close to reality. We first discuss how to rigorously construct the (necessarily) unique stationary version of the system under some natural stability conditions. We then consider the distribution of performance steady-state characteristics, namely, the buffer content, the idle period and the busy period. These derivations are much based on the fact that the inverse of the local time of a Markov process is a Levy process (a subordinator) hence making the theory of Levy processes applicable. Another important ingredient in our approach is the Palm calculus coming from the point process point of view.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا