ترغب بنشر مسار تعليمي؟ اضغط هنا

We present evidence for mass segregation in the outer-halo globular cluster Palomar 14, which is intuitively unexpected since its present-day two-body relaxation time significantly exceeds the Hubble time. Based on archival Hubble Space Telescope ima ging, we analyze the radial dependence of the stellar mass function in the clusters inner 39.2 pc in the mass range of 0.53-0.80 M_sun, ranging from the main-sequence turn-off down to a V-band magnitude of 27.1 mag. The mass function at different radii is well approximated by a power law and rises from a shallow slope of 0.6+/-0.2 in the clusters core to a slope of 1.6+/-0.3 beyond 18.6 pc. This is seemingly in conflict with the finding by Beccari et al. (2011), who interpret the clusters non-segregated population of (more massive) blue straggler stars, compared to (less massive) red giants and horizontal branch stars, as evidence that the cluster has not experienced dynamical segregation yet. We discuss how both results can be reconciled. Our findings indicate that the cluster was either primordially mass-segregated and/or used to be significantly more compact in the past. For the latter case, we propose tidal shocks as the mechanism driving the clusters expansion, which would imply that Palomar 14 is on a highly eccentric orbit. Conversely, if the cluster formed already extended and with primordial mass segregation, this could support an accretion origin of the cluster.
We investigate the epicyclic motion of stars escaping from star clusters. Using streaklines, we visualise the path of escaping stars and show how epicyclic motion leads to over- and underdensities in tidal tails of star clusters moving on circular an d eccentric orbits about a galaxy. Additionally, we investigate the effect of the cluster mass on the tidal tails, by showing that their structure is better matched when the perturbing effect of the cluster mass is included. By adjusting streaklines to results of N-body computations we can accurately and quickly reproduce all observed substructure, especially the streaky features often found in simulations which may be interpreted in observations as multiple tidal tails. Hence, we can rule out tidal shocks as the origin of such substructures. Finally, from the adjusted streakline parameters we can verify that for the star clusters we studied escape mainly happens from the tidal radius of the cluster, given by x_L = (GM/(Omega^2-partial^2Phi/partial R^2))^{1/3}. We find, however, that there is another limiting radius, the edge radius, which gives the smallest radius from which a star can escape during one cluster orbit about the galaxy. For eccentric cluster orbits the edge radius shrinks with increasing orbital eccentricity (for fixed apocentric distance) but is always significantly larger than the respective perigalactic tidal radius. In fact, the edge radii of the clusters we investigated, which are extended and tidally filling, agree well with their (fitted) King radii, which may indicate a fundamental connection between these two quantities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا