ترغب بنشر مسار تعليمي؟ اضغط هنا

Bi2Sr2CaCu2O8+x (Bi-2212) superconducting long-length wires are mainly limited in obtaining high critical currents densities (JC) by the internal gas pressure generated during the heat treatment, which expands the wire diameter and dedensifies the su perconducting filaments. Several ways have been developed to increase the density of the superconducting filaments and therefore decreasing the bubble density: much higher critical currents have been reached always acting on the final as-drawn wires. We here try to pursue the same goal of having a denser wire by acting on the deformation technique, through a partial use of the groove-rolling at different wire processing stages. Such technique has a larger powders compaction power, is straightforwardly adaptable to long length samples, and allows the fabrication of samples with round, square or rectangular shape depending on the application requirements. In this paper we demonstrate the capability of this technique to increase the density in Bi-2212 wires which leads to a three-fold increase in Jc with respect to drawn wires, making this approach very promising for fabricating Bi-2212 wires for high magnetic field magnets, i.e. above 25 T.
Recently the interest about Bi-2212 round wire superconductor for high magnetic field use has been enhancing despite the fact that an increase of the critical current is still needed to boost its successful use in such applications. Recent studies ha ve demonstrated that the main obstacle to current flow, especially in long wires, is the residual porosity inside these Powder-In-Tube processed conductors which develops in bubbles-agglomeration when the Bi-2212 melts. Through this work we tried to overcome this issue acting on the wire densification by changing the deformation process. Here we show the effects of groove-rolling versus drawing process on the critical current density JC and on the microstructure. In particular, groove-rolled multifilamentary wires show a JC increased by a factor of about 3 with respect to drawn wires prepared with the same Bi-2212 powder and architecture. We think that this approach in the deformation process is able to produce the required improvements both because the superconducting properties are enhanced and because it makes the fabrication process faster and cheaper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا