ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the ACS on HST, we have surveyed the FUV and NUV populations in the core region of M80. The CMD reveals large numbers of blue and extreme horizontal branch stars and blue stragglers, as well as approx. 60 objects lying in the region of the CMD where accreting and detached white dwarf binaries are expected. Overall, the blue straggler stars are the most centrally concentrated population, with their radial distribution suggesting a typical blue straggler mass of about 1.2 Msun. However, counterintuitively, the faint blue stragglers are significantly more centrally concentrated than the bright ones and a Kolmogorov-Smirnov test suggest only a 3.5% probability that both faint and bright blue stragglers are drawn from the same distribution. This may suggest that (some) blue stragglers get a kick during their formation. We have also been able to identify the majority of the known X-ray sources in the core with FUV bright stars. One of these FUV sources is a likely dwarf nova that was in eruption at the time of the FUV observations. This object is located at a position consistent with Nova 1860 AD, or T Scorpii. Based on its position, X-ray and UV characteristics, this system is almost certainly the source of the nova explosion. The radial distribution of the X-ray sources and of the cataclysmic variable candidates in our sample suggest masses > 1 Msun.
469 - Christian Knigge 2008
We present far-UV spectroscopy obtained with HST for 48 blue objects in the core of 47 Tuc. Based on their position in a FUV-optical colour-magnitude diagram, these were expected to include cataclysmic variables (CVs), blue stragglers (BSs), white dw arfs (WDs) and other exotic objects. For a subset of these sources, we also construct FUV-NIR SEDs. Based on our analysis of this extensive data set, we report the following main results. (1) We spectroscopically confirm 3 previously known or suspected CVs via the detection of emission lines and find new evidence for dwarf nova eruptions in two of these. (2) Only one other source in our spectroscopic sample exhibits marginal evidence for line emission, but predicted and observed CV numbers still agree to within a factor of about 2-3. (3) We have discovered a hot (T_eff = 8700 K), low-mass (M = 0.05 M_sun) secondary star in a previously known 0.8 day binary system. This exotic object is probably the remnant of a subgiant that has been stripped of its envelope and may represent the ``smoking gun of a recent dynamical encounter. (4) We have found a Helium WD, the second to be optically detected in 47 Tuc, and the first outside a millisecond-pulsar system. (5) We have discovered a BS-WD binary system, the first known in any globular cluster. (6) We have found two additional candidate WD binary systems with putative main sequence and subgiant companions. (7) We estimate the WD binary fraction in the core of 47 Tuc to be 15 +17/-9 (stat) +8/-7 (sys). (8) One BS in our sample may exceed twice the cluster turn-off mass, but the uncertainties are large. Taken as a whole, our study illustrates the wide range of stellar exotica that are lurking in the cores of GCs, most of which are likely to have undergone significant dynamical encounters. [abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا