ترغب بنشر مسار تعليمي؟ اضغط هنا

We recently introduced [J. Chem. Phys. 152 2020, 204103] the nuclear-electronic all-particle density matrix renormalization group method (NEAP-DMRG) to solve the molecular Schr{o}dinger equation, based on a stochastically optimized orbital basis, wit hout invoking the Born-Oppenheimer approximation. In this work, we combine the DMRG with nuclear-electronic Hartree-Fock (NEHF-DMRG), treating nuclei and electrons on the same footing. Inter- and intra-species correlations are described within the DMRG without truncating the excitation degree of the full configuration interaction wave function. We extend the concept of orbital entanglement and mutual information to nuclear-electronic wave functions and demonstrate that they are reliable metrics to detect strong correlation effects. We apply NEHF-DMRG to the HeHHe$^+$ molecular ion, to obtain accurate proton densities, ground-state total energies, and vibrational transition frequencies by comparison with state-of-the-art data obtained with grid-based approaches and modern configuration interaction methods. For HCN, we improve on the accuracy of the latter approaches with respect to both ground-state absolute energy and proton density which is a major challenge for multi-reference nuclear-electronic state-of-the-art methods.
A new explicitly correlated functional form for expanding the wave function of an N-particle system with arbitrary angular momentum and parity is presented. We develop the projection-based approach, numerically exploited in our previous work [J. Chem . Phys. 149, 184105 (2018)], to explicitly correlated Gausssians with one-axis shifted centers and derive the matrix elements for the Hamiltonian and the angular momentum operators by analytically solving the integral projection operator. Variational few-body calculations without assuming the Born-Oppenheimer approximation are presented for several rotationally excited states of three- and four-particle systems. We show how the new formalism can be used as a unified framework for high-accuracy calculations of properties of small atoms and molecules.
We introduce the Nuclear Electronic All-Particle Density Matrix Renormalization Group (NEAP-DMRG) method for solving the time-independent Schrodinger equation simultaneously for electrons and other quantum species. In contrast to already existing mul ticomponent approaches, in this work we construct from the outset a multi-reference trial wave function with stochastically optimized non-orthogonal Gaussian orbitals. By iterative refining of the Gaussians positions and widths, we obtain a compact multi-reference expansion for the multicomponent wave function. We extend the DMRG algorithm to multicomponent wave functions to take into account inter- and intra-species correlation effects. The efficient parametrization of the total wave function as a matrix product state allows NEAP-DMRG to accurately approximate full configuration interaction energies of molecular systems with more than three nuclei and twelve particles in total, which is currently a major challenge for other multicomponent approaches. We present NEAP-DMRG results for two few-body systems, i.e., H$_2$ and H$_3^+$, and one larger system, namely BH$_3$
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا