ترغب بنشر مسار تعليمي؟ اضغط هنا

The macroscopic magnetic moment of a superparamagnetic system has to overcome an energy barrier in order to switch its direction. This barrier is formed by magnetic anisotropies in the material and may be surmounted typically after 10^9 to 10^12 atte mpts per second by thermal fluctuations. In a first step, the associated switching rate may be described by a Neel-Brown-Arrhenius law, in which the energy barrier is assumed as constant or a given temperature. Yet, magnetic anisotropies in general depend on temperature themselves which is known to modify the Neel-Brown-Arrhenius law. We illustrate quantitatively the implications of a temperature-dependent anisotropy on the switching rate and in particular for the interpretation of the prefactor as an attempt frequency. In particular, we show that realistic numbers for the attempt frequency are obtained when the temperature dependence of the anisotropy is taken into account.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا