ترغب بنشر مسار تعليمي؟ اضغط هنا

CIZA J2242.8+5301 ($z = 0.188$, nicknamed Sausage) is an extremely massive ($M_{200}sim 2.0 times 10^{15}M_odot$ ), merging cluster with shock waves towards its outskirts, which was found to host numerous emission-line galaxies. We performed extremel y deep Westerbork Synthesis Radio Telescope HI observations of the Sausage cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission-line galaxies in the Sausage cluster have, on average, as much HI gas as field galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large HI reservoirs are expected to be consumed within $sim0.75-1.0$ Gyr by the vigorous SF and AGN activity and/or driven out by the out-flows we observe. We find that the star-formation rate in a large fraction of H$alpha$ emission-line cluster galaxies correlates well with the radio broad band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. This fully supports the interpretation proposed by Stroe et al. (2015) and Sobral et al. (2015) that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.
CIZA J2242.8+5301 is a merging system with a prominent (~2 Mpc long) radio relic, which together with the morphology of the X-ray emission provides strong evidence for a violent collision along the N-S axis. We present our constraints on the dark mat ter distribution of this unusual system using Subaru and CFHT imaging data. Measuring a high S/N lensing signal from this cluster is potentially a challenging task because of its proximity to the Milky Way plane (|b|~5 deg). We overcome this challenge with careful observation planning and systematics control, which enables us to successfully map the dark matter distribution of the cluster with high fidelity. The resulting mass map shows that the mass distribution is highly elongated along the N-S merger axis inferred from the orientation of the radio relics. Based on our mass reconstruction, we identify two sub-clusters, which coincide with the cluster galaxy distributions. We determine their masses using MCMC analysis by simultaneously fitting two NFW halos without fixing their centroids. The resulting masses of the northern and southern systems are $M_{200}=11.0_{-3.2}^{+3.7}times10^{14} M_{sun}$ and $9.8_{-2.5}^{+3.8}times10^{14} M_{sun}$, respectively, indicating that we are witnessing a post-collision of two giant systems of nearly equal mass. When the mass and galaxy centroids are compared in detail, we detect ~ 1 (~190 kpc) offsets in both northern and southern sub-clusters. We find that the galaxy luminosity-mass offset for the northern clump is statistically significant at the ~2 sigma level whereas the detection is only marginal for the southern sub-cluster in part because of a relatively large mass centroid error. We conclude that it is yet premature to uniquely attribute the galaxy-mass misalignment to SIDM and discuss caveats.
X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We c arried out a deep (i<25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which is the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter. We find that the system is dominated by two subclusters of comparable richness with a projected separation of 6.9^{+0.7}_{-0.5} (1.3^{+0.13}_{-0.10} Mpc). We find that the north and south subclusters have similar redshifts of z=0.188 with a relative line-of-sight velocity difference of 69+/-190 km/s. We also find that north and south subclusters have velocity dispersions of 1160^{+100}_{-90} km/s and 1080^{+100}_{-70} km/s, respectively. These correspond to masses of 16.1^{+4.6}_{-3.3}x10^14 M_sun and 13.0^{+4.0}_{-2.5}x10^14 M_sun, respectively. While velocity dispersion measurements of merging clusters can be biased we believe the bias in this system to be minor due to the large projected separation and nearly plane-of-sky merger configuration. CIZA J2242.8+5301 is a relatively clean dissociative cluster merger with near 1:1 mass ratio, which makes it an ideal merger for studying merger associated physical phenomena.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا