ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the previously known plaquette-singlet and ant iferromagnetic states. Our conclusions are based on finite-size scaling of excited level crossings and order parameters. Together with previous results on candidate models for deconfined quantum criticality and spin liquid phases, our results point to a unified quantum phase diagram where the deconfined quantum-critical point separates a line of first-order transitions and a gapless spin liquid phase. The frustrated Shastry-Sutherland model is close to the critical point but slightly inside the spin liquid phase, while previously studied unfrustrated models cross the first-order line. We also argue that recent heat capacity measurements in SrCu$_2$(BO$_3$)$_2$ show evidence of the proposed spin liquid at pressures between 2.6 and 3 GPa.
We report a quantum Monte Carlo study of the phase transition between antiferromagnetic and valence-bond solid ground states in the square-lattice $S=1/2$ $J$-$Q$ model. The critical correlation function of the $Q$ terms gives a scaling dimension cor responding to the value $ u = 0.455 pm 0.002$ of the correlation-length exponent. This value agrees with previous (less precise) results from conventional methods, e.g., finite-size scaling of the near-critical order parameters. We also study the $Q$-derivatives of the Binder cumulants of the order parameters for $L^2$ lattices with $L$ up to $448$. The slope grows as $L^{1/ u}$ with a value of $ u$ consistent with the scaling dimension of the $Q$ term. There are no indications of runaway flow to a first-order phase transition. The mutually consistent estimates of $ u$ provide compelling support for a continuous deconfined quantum-critical point.
The $S=1$ Affleck-Kennedy-Lieb-Tasaki (AKLT) quantum spin chain was the first rigorous example of an isotropic spin system in the Haldane phase. The conjecture that the $S=3/2$ AKLT model on the hexagonal lattice is also in a gapped phase has remaine d open, despite being a fundamental problem of ongoing relevance to condensed-matter physics and quantum information theory. Here we confirm this conjecture by demonstrating the size-independent lower bound $Delta >0.006$ on the spectral gap of the hexagonal model with periodic boundary conditions in the thermodynamic limit. Our approach consists of two steps combining mathematical physics and high-precision computational physics. We first prove a mathematical finite-size criterion which gives an analytical, size-independent bound on the spectral gap if the gap of a particular cut-out subsystem of 36 spins exceeds a certain threshold value. Then we verify the finite-size criterion numerically by performing state-of-the-art DMRG calculations on the subsystem.
102 - Anders W. Sandvik 2019
The Stochastic Series Expansion (SSE) technique is a quantum Monte Carlo method that is especially efficient for many quantum spin systems and boson models. It was the first generic method free from the discretization errors affecting previous path i ntegral based approaches. These lecture notes give a brief overview of the SSE method and its applications. In the introductory section, the representation of quantum statistical mechanics by the power series expansion of ${rm e}^{-beta H}$ will be compared with path integrals in discrete and continuous imaginary time. Extensions of the SSE approach to ground state projection and quantum annealing in imaginary time will also be briefly discussed. The later sections introduce efficient sampling schemes (loop and cluster updates) that have been developed for many classes of models. A summary of generic forms of estimators for important observables are also given. Applications are discussed in the last section.
The theory of deconfined quantum critical points describes phase transitions at temperature T = 0 outside the standard paradigm, predicting continuous transformations between certain ordered states where conventional theory requires discontinuities. Numerous computer simulations have offered no proof of such transitions, however, instead finding deviations from expected scaling relations that were neither predicted by the DQC theory nor conform to standard scenarios. Here we show that this enigma can be resolved by introducing a critical scaling form with two divergent length scales. Simulations of a quantum magnet with antiferromagnetic and dimerized ground states confirm the form, proving a continuous transition with deconfined excitations and also explaining anomalous scaling at T > 0. Our findings revise prevailing paradigms for quantum criticality, with potentially far-reaching implications for many strongly-correlated materials.
We test three different approaches, based on quantum Monte Carlo simulations, for computing the velocity $c$ of triplet excitations in antiferromagnets. We consider the standard $S=1/2$ one- and two-dimensional Heisenberg models, as well as a bilayer Heisenberg model at its critical point. Computing correlation functions in imaginary time and using their long-time behavior, we extract the lowest excitation energy versus momentum using improved fitting procedures and a generalized moment method. The velocity is then obtained from the dispersion relation. We also exploit winding numbers to define a cubic space-time geometry, where the velocity is obtained as the ratio of the spatial and temporal lengths of the system when all winding number fluctuations are equal. The two methods give consistent results for both ordered and critical systems, but the winding-number estimator is more precise. For the Heisenberg chain, we accurately reproduce the exactly known velocity. For the two-dimensional Heisenberg model, our results are consistent with other recent calculations, but with an improved statistical precision; $c=1.65847(4)$. We also use the hydrodynamic relation $c^2=rho_s/chi_perp(qto 0)$ between $c$, the spin stiffness $rho_s$, and the transversal susceptibility $chi_perp$, using the smallest non-zero momentum $q=2pi/L$. This method also is well controlled in two dimensions, but the cubic criterion for winding numbers delivers better numerical precision. In one dimension the hydrodynamic relation is affected by logarithmic corrections which make accurate extrapolations difficult. As an application of the winding-number method, for the quantum-critical bilayer model our high-precision determination of the velocity enables us to quantitatively test, at an unprecedented level, field-theoretic predictions for low-temperature scaling forms where $c$ enters.
282 - Anders W. Sandvik 2015
A method for analytic continuation of imaginary-time correlation functions (here obtained in quantum Monte Carlo simulations) to real-frequency spectral functions is proposed. Stochastically sampling a spectrum parametrized by a large number of delta -functions, treated as a statistical-mechanics problem, it avoids distortions caused by (as demonstrated here) configurational entropy in previous sampling methods. The key development is the suppression of entropy by constraining the spectral weight to within identifiable optimal bounds and imposing a set number of peaks. As a test case, the dynamic structure factor of the S=1/2 Heisenberg chain is computed. Very good agreement is found with Bethe Ansatz results in the ground state (including a sharp edge) and with exact diagonalization of small systems at elevated temperatures.
We discuss an Ising spin glass where each $S=1/2$ spin is coupled antiferromagnetically to three other spins (3-regular graphs). Inducing quantum fluctuations by a time-dependent transverse field, we use out-of-equilibrium quantum Monte Carlo simulat ions to study dynamic scaling at the quantum glass transition. Comparing the dynamic exponent and other critical exponents with those of the classical (temperature-driven) transition, we conclude that quantum annealing is less efficient than classical simulated annealing in bringing the system into the glass phase. Quantum computing based on the quantum annealing paradigm is therefore inferior to classical simulated annealing for this class of problems. We also comment on previous simulations where a parameter is changed with the simulation time, which is very different from the true Hamiltonian dynamics simulated here.
Observing constituent particles with fractional quantum numbers in confined and deconfined states is an interesting and challenging problem in quantum many-body physics. Here we further explore a computational scheme [Y. Tang and A. W. Sandvik, Phys. Rev. Lett. {bf 107}, 157201 (2011)] based on valence-bond quantum Monte Carlo simulations of quantum spin systems. Using several different one-dimensional models, we characterize $S=1/2$ spinon excitations using the spinon size and confinement length (the size of a bound state). The spinons have finite size in valence-bond-solid states, infinite size in the critical region, and become ill-defined in the Neel state. We also verify that pairs of spinons are deconfined in these uniform spin chains but become confined upon introducing a pattern of alternating coupling strengths (dimerization) or coupling two chains (forming a ladder). In the dimerized system an individual spinon can be small when the confinement length is large---this is the case when the imposed dimerization is weak but the ground state of the corresponding uniform chain is a spontaneously formed valence-bond-solid (where the spinons are deconfined). Based on our numerical results, we argue that the situation $lambda ll Lambda$ is associated with weak repulsive short-range spinon-spinon interactions. In principle both the length-scales can be individually tuned from small to infinite (with $lambda le Lambda$) by varying model parameters. In the ladder system the two lengths are always similar, and this is the case also in the dimerized systems when the corresponding uniform chain is in the critical phase. In these systems the effective spinon-spinon interactions are purely attractive and there is only a single large length scale close to criticality, which is reflected in the standard spin correlations as well as in the spinon characteristics.
We use Monte Carlo methods to study spinons in two-dimensional quantum spin systems, characterizing their intrinsic size $lambda$ and confinement length $Lambda$. We confirm that spinons are deconfined, $Lambda to infty$ and $lambda$ finite, in a res onating valence-bond spin-liquid state. In a valence-bond solid, we find finite $lambda$ and $Lambda$, with $lambda$ of a single spinon significantly larger than the bound-state---the spinon is soft and shrinks as the bound state is formed. Both $lambda$ and $Lambda$ diverge upon approaching the critical point separating valence-bond solid and Neel ground states. We conclude that the spinon deconfinement is marginal in the lowest-energy state in the spin-1 sector, due to weak attractive spinon interactions. Deconfinement in the vicinity of the critical point should occur at higher energies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا