ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a novel photonic structure composed of metal nanolayer, Bragg mirror and metal nanolayer. The structure supports resonances that are transitional between Fabry-Perot and Tamm modes. When the dielectric contrast of the DBR is removed these modes are a pair of conventional Fabry-Perot resonances. They spectrally merge into a Tamm mode at high contrast. Such behavior differs from the results for structures supporting Tamm modes reported earlier. The optical properties of the structure in the frequency range of the DBR stop band, including highly beneficial 50% transmittivity through thick structures, are determined by the introduced in the paper hybrid resonances. The results can find a wide range of photonic applications.
We predict a dynamic metallization effect where an ultrafast (single-cycle) optical pulse with a field less or on the order of 1 V/Angstrom causes plasmonic metal-like behavior of a dielectric film with a few-nm thickness. This manifests itself in pl asmonic oscillations of polarization and a significant population of the conduction band evolving on a femtosecond time scale. These phenomena are due a combination of both adiabatic (reversible) and diabatic (for practical purposes irreversible) pathways.
We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). The is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1 V/A and pulse durations ranging from ~ 1 fs to ~ 10 ns for film thickness 3 to 10 nm.
We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). The is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1 V/A and pulse durations ranging from ~ 1 fs to ~ 10 ns for film thickness 3 to 10 nm.
Recent years have seen an explosive research and development of nanoplasmonics in the visible and near-infrared (near-ir) frequency regions. One of the most fundamental effects in nanoplasmonics is nano-concentration of optical energy. Plasmonic nano focusing has been predicted and experimentally achieved. It will be very beneficial for the fundamental science, engineering, environmental, and defense applications to be able to nano-concentrate terahertz radiation (frequency 1 - 10 THz or vacuum wavelength 300 - 30 microns). This will allow for the nanoscale spatial resolution for THz imaging and introduce the THz spectroscopy on the nanoscale, taking full advantage of the rich THz spectra and submicron to nanoscale structures of many engineering, physical, and biological objects of wide interest: electronic components (integrated circuits, etc.), bacteria, their spores, viruses, macromolecules, carbon clusters and nanotubes, etc. In this Letter we establish the principal limits for the nanoconcentration of the THz radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration We predict that the adiabatic compression of THz radiation from the initial spot size of light wavelength to the final size of R = 100 - 250 nm can be achieved with the THz radiation intensity increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for the THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses will allow the observation of nonlinear THz effects and a carrying out a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative.
Nanostructured plasmonic metal systems are known to enhance greatly variety of radiative and nonradiative optical processes, both linear and nonlinear, which are due to the interaction of an electron in a molecule or semiconductor with the enhanced l ocal optical field of the surface plasmons. Principally different are numerous many-body phenomena that are due to the Coulomb interaction between charged particles: carriers (electrons and holes) and ions. These include carrier-carrier or carrier-ion scattering, energy and momentum transfer (including the drag effect), thermal equilibration, exciton formation, impact ionization, Auger effects, etc. It is not widely recognized that these and other many-body effects can also be modified and enhanced by the surface-plasmon local fields. A special but extremely important class of such many-body phenomena is constituted by chemical reactions at metal surfaces, including catalytic reactions. Here, we propose a general and powerful theory of the plasmonic enhancement of the many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. We illustrate this theory by computing this dressed interaction explicitly for an important example of metal-dielectric nanoshells, which exhibits a reach resonant behavior in both the magnitude and phase. This interaction is used to describe the nanoplasmonic-enhanced Foerster energy transfer between nanocrystal quantum dots in the proximity of a plasmonic nanoshell. Catalysis at nanostructured metal surfaces, nonlocal carrier scattering and surface-enhanced Raman scattering are discussed among other effects and applications where the nanoplasmonic renormalization of the Coulomb interaction may be of principal importance.
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatio-temporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward t he sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The one-dimensional spatial profile and temporal waveform of this pulse are completely coherently controlled.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا