ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the effect of galaxy intrinsic alignments (IAs) on dark energy constraints from weak gravitational lensing. We summarise the latest version of the linear alignment model of IAs, following the brief note of Hirata & Seljak (2010) and furth er interpretation in Laszlo et al. (2011). We show the cosmological bias on the dark energy equation of state parameters w0 and wa that would occur if IAs were ignored. We find that w0 and wa are both catastrophically biased, by an absolute value of just greater than unity under the Fisher matrix approximation. This contrasts with a bias several times larger for the earlier IA implementation. Therefore there is no doubt that IAs must be taken into account for future Stage III experiments and beyond. We use a flexible grid of IA and galaxy bias parameters as used in previous work, and investigate what would happen if the universe used the latest IA model, but we assumed the earlier version. We find that despite the large difference between the two IA models, the grid flexibility is sufficient to remove cosmological bias and recover the correct dark energy equation of state. In an appendix, we compare observed shear power spectra to those from a popular previous implementation and explain the differences.
Weak gravitational lensing provides a sensitive probe of cosmology by measuring the mass distribution and the geometry of the low redshift universe. We show how an all-sky weak lensing tomographic survey can jointly constrain different sets of cosmol ogical parameters describing dark energy, massive neutrinos (hot dark matter), and the primordial power spectrum. In order to put all sectors on an equal footing, we introduce a new parameter $beta$, the second order running spectral index. Using the Fisher matrix formalism with and without CMB priors, we examine how the constraints vary as the parameter set is enlarged. We find that weak lensing with CMB priors provides robust constraints on dark energy parameters and can simultaneously provide strong constraints on all three sectors. We find that the dark energy sector is largely insensitive to the inclusion of the other cosmological sectors. Implications for the planning of future surveys are discussed.
67 - Anais Rassat 2009
We show that linear redshift distortions in the galaxy distribution can affect the ISW galaxy-temperature signal, when the galaxy selection function is derived from a redshift survey. We find this effect adds power to the ISW signal at all redshifts and is larger at higher redshifts. Omission of this effect leads to an overestimation of the dark energy density $Omega_Lambda$ as well as an underestimation of statistical errors. We find a new expression for the ISW Limber equation which includes redshift distortions, though we find that Limber equations for the ISW calculation are ill-suited for tomographic calculations when the redshift bin width is small. The inclusion of redshift distortions provides a new cosmological handle in the ISW spectrum, which can help constrain dark energy parameters, curvature and alternative cosmologies. Code is available on request and will soon be added as a module to the iCosmo platform (http://www.icosmo.org)
Astronomy and cosmology have embraced the internet. We routinely and successfully use the internet as a repository for sharing code, publications and information, and as a computational resource. However the interactive nature of the web, for use as an alternative to downloading code has been largely overlooked. In this article we will outline a simple framework in which a cosmological code can be turned into an interactive web interface. This is presented as a result of creating http://www.icosmo.org which is a front-end for the open-source software iCosmo. We explain how an HTML page can be created and how a cosmological code can be incorporated into a web environment using CGI scripts. We outline how plots and downloadable text can be made, and describe how help and documentation can be created. By using simple HTML and CGI scripts a basic web interface for any cosmological code can be created easily. We provide a worked example of the methods outlined, which can be used as a simple template by any researcher who wants to share their work online.
The Baryon Acoustic Oscillations (BAOs) or baryon wiggles which are present in the galaxy power spectrum at scales 100-150Mpc/h are powerful features with which to constrain cosmology. The potential of these probes is such that these are now included as primary science goals in the planning of several future galaxy surveys. However, there is not a uniquely defined BAO Method in the literature but a range of implementations. We study the assumptions and cosmological performances of three different BAO methods: the full Fourier space power spectrum [P(k)], the `wiggles only in Fourier space and the spherical harmonics power spectrum [C(l)]. We contrast the power of each method to constrain cosmology for two fiducial surveys taken from the Dark Energy Task Force (DETF) report and equivalent to future ground and space based spectroscopic surveys. We find that, depending on the assumptions used, the dark energy Figure of Merit (FoM) can change by up to a factor of 35 for a given fiducial model and survey. We compare our results with the DETF implementation and, discuss the robustness of each probe, by quantifying the dependence of the FoM with the wavenumber range. The more information used by a method, the higher its statistical performance, but the higher its sensitivity to systematics and implementations details.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا