ترغب بنشر مسار تعليمي؟ اضغط هنا

Reversible debuggers have been developed at least since 1970. Such a feature is useful when the cause of a bug is close in time to the bug manifestation. When the cause is far back in time, one resorts to setting appropriate breakpoints in the debugg er and beginning a new debugging session. For these cases when the cause of a bug is far in time from its manifestation, bug diagnosis requires a series of debugging sessions with which to narrow down the cause of the bug. For such difficult bugs, this work presents an automated tool to search through the process lifetime and locate the cause. As an example, the bug could be related to a program invariant failing. A binary search through the process lifetime suffices, since the invariant expression is true at the beginning of the program execution, and false when the bug is encountered. An algorithm for such a binary search is presented within the FReD (Fast Reversible Debugger) software. It is based on the ability to checkpoint, restart and deterministically replay the multiple processes of a debugging session. It is based on GDB (a debugger), DMTCP (for checkpoint-restart), and a custom deterministic record-replay plugin for DMTCP. FReD supports complex, real-world multithreaded programs, such as MySQL and Firefox. Further, the binary search is robust. It operates on multi-threaded programs, and takes advantage of multi-core architectures during replay.
A new style of temporal debugging is proposed. The new URDB debugger can employ such techniques as temporal search for finding an underlying fault that is causing a bug. This improves on the standard iterative debugging style, which iteratively re-ex ecutes a program under debugger control in the search for the underlying fault. URDB acts as a meta-debugger, with current support for four widely used debuggers: gdb, MATLAB, python, and perl. Support for a new debugger can be added in a few hours. Among its points of novelty are: (i) the first reversible debuggers for MATLAB, python, and perl; (ii) support for todays multi-core architectures; (iii) reversible debugging of multi-process and distributed computations; and (iv) temporal search on changes in program expressions. URDB gains its reversibility and temporal abilities through the fast checkpoint-restart capability of DMTCP (Distributed MultiThreaded CheckPointing). The recently enhanced DMTCP also adds ptrace support, enabling one to freeze, migrate, and replicate debugging sessions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا