ترغب بنشر مسار تعليمي؟ اضغط هنا

We compute the first Dirichlet eigenvalue of a geodesic ball in a rotationally symmetric model space in terms of the moment spectrum for the Brownian motion exit times from the ball. This expression implies an estimate as exact as you want for the fi rst Dirichlet eigenvalue of a geodesic ball in these rotationally symmetric spaces, including the real space forms of constant curvature. As an application of the model space theory we prove lower and upper bounds for the first Dirichlet eigenvalues of extrinsic metric balls in submanifolds of ambient Riemannian spaces which have model space controlled curvatures. Moreover, from this general setting we thereby obtain new generalizations of the classical and celebrated results due to McKean and Cheung--Leung concerning the fundamental tones of Cartan-Hadamard manifolds and the fundamental tones of submanifolds with bounded mean curvature in hyperbolic spaces, respectively.
We prove explicit upper and lower bounds for the $L^1$-moment spectra for the Brownian motion exit time from extrinsic metric balls of submanifolds $P^m$ in ambient Riemannian spaces $N^{n}$. We assume that $P$ and $N$ both have controlled radial cur vatures (mean curvature and sectional curvature, respectively) as viewed from a pole in $N$. The bounds for the exit moment spectra are given in terms of the corresponding spectra for geodesic metric balls in suitably warped product model spaces. The bounds are sharp in the sense that equalities are obtained in characteristic cases. As a corollary we also obtain new intrinsic comparison results for the exit time spectra for metric balls in the ambient manifolds $N^n$ themselves.
We give a geometric criterion which shows p-parabolicity of a class of submanifolds in a Riemannian manifold, with controlled second fundamental form, for p bigger or equal than 2.
Some analysis on the Lorentzian distance in a spacetime with controlled sectional (or Ricci) curvatures is done. In particular, we focus on the study of the restriction of such distance to a spacelike hypersurface satisfying the Omori-Yau maximum pri nciple. As a consequence, and under appropriate hypotheses on the (sectional or Ricci) curvatures of the ambient spacetime, we obtain sharp estimates for the mean curvature of those hypersurfaces. Moreover, we also give a suficient condition for its hyperbolicity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا