ترغب بنشر مسار تعليمي؟ اضغط هنا

We have developed a multi-objective optimization (MOO) procedure to construct modified-embedded-atom-method (MEAM) potentials with minimal manual fitting. This procedure has been applied successfully to develop a new MEAM potential for magnesium. The MOO procedure is designed to optimally reproduce multiple target values that consist of important materials properties obtained from experiments and first-principles calculations based on density-functional theory (DFT). The optimized target quantities include elastic constants, cohesive energies, surface energies, vacancy formation energies, and the forces on atoms in a variety of structures. The accuracy of the new potential is assessed by computing several material properties of Mg and comparing them with those obtained from other potentials previously published. We found that the present MEAM potential yields a significantly better overall agreement with DFT calculations and experiments.
We report a molecular dynamics simulation of melting of tungsten (W) nanoparticles. The modified embedded atom method (MEAM) interatomic potentials are used to describe the interaction between tungsten atoms. The melting temperature of unsupported tu ngsten nanoparticles of different sizes are found to decrease as the size of the particles decreases. The melting temperature obtained in the present study is approximately a decreasing function of inverse radius, in a good agreement with the predictions of thermodynamic models. We also observed that the melting of a W nanoparticle is preceded by the premelting of its outer skin at a temperature lower than its melting temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا