ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a multi-dimensional model of a compressible fluid in a bounded domain. We want to estimate the density and velocity of the fluid, based on the observations for only velocity. We build an observer exploiting the symmetries of the fluid dyn amics laws. Our main result is that for the linearised system with full observations of the velocity field, we can find an observer which converges to the true state of the system at any desired convergence rate for finitely many but arbitrarily large number of Fourier modes. Our one-dimensional numerical results corroborate the results for the linearised, fully observed system, and also show similar convergence for the full nonlinear system and also for the case when the velocity field is observed only over a subdomain.
We prove that for linear, discrete, time-varying, deterministic system (perfect model) with noisy outputs, the Riccati transformation in the Kalman filter asymptotically bounds the rank of the forecast and the analysis error covariance matrices to be less than or equal to the number of non-negative Lyapunov exponents of the system. Further, the support of these error covariance matrices is shown to be confined to the space spanned by the unstable-neutral backward Lyapunov vectors, providing the theoretical justification for the methodology of the algorithms that perform assimilation only in the unstable-neutral subspace. The equivalent property of the autonomous system is investigated as a special case.
Recent studies show indication of the effectiveness of synchronization as a data assimilation tool for small or meso-scale forecast when less number of variables are observed frequently. Our main aim here is to understand the effects of changing obse rvational frequency and observational noise on synchronization and prediction in a low dimensional chaotic system, namely the Chua circuit model. We perform {it identical twin experiments} in order to study synchronization using discrete-in-time observations generated from independent model run and coupled unidirectionally to the model through $x$, $y$ and $z$ separately. We observe synchrony in a finite range of coupling constant when coupling the x and y variables of the Chua model but not when coupling the z variable. This range of coupling constant decreases with increasing levels of noise in the observations. The Chua system does not show synchrony when the time gap between observations is greater than about one-seventh of the Lyapunov time. Finally, we also note that prediction errors are much larger when noisy observations are used than when using observations without noise.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا