ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Gradient Activation Maps (GAM) - a machinery for explaining predictions made by visual similarity and classification models. By gleaning localized gradient and activation information from multiple network layers, GAM offers improved visual explanations, when compared to existing alternatives. The algorithmic advantages of GAM are explained in detail, and validated empirically, where it is shown that GAM outperforms its alternatives across various tasks and datasets.
Multilayer-perceptrons (MLP) are known to struggle with learning functions of high-frequencies, and in particular cases with wide frequency bands. We present a spatially adaptive progressive encoding (SAPE) scheme for input signals of MLP networks, w hich enables them to better fit a wide range of frequencies without sacrificing training stability or requiring any domain specific preprocessing. SAPE gradually unmasks signal components with increasing frequencies as a function of time and space. The progressive exposure of frequencies is monitored by a feedback loop throughout the neural optimization process, allowing changes to propagate at different rates among local spatial portions of the signal space. We demonstrate the advantage of SAPE on a variety of domains and applications, including regression of low dimensional signals and images, representation learning of occupancy networks, and a geometric task of mesh transfer between 3D shapes.
Recently, deep generative adversarial networks for image generation have advanced rapidly; yet, only a small amount of research has focused on generative models for irregular structures, particularly meshes. Nonetheless, mesh generation and synthesis remains a fundamental topic in computer graphics. In this work, we propose a novel framework for synthesizing geometric textures. It learns geometric texture statistics from local neighborhoods (i.e., local triangular patches) of a single reference 3D model. It learns deep features on the faces of the input triangulation, which is used to subdivide and generate offsets across multiple scales, without parameterization of the reference or target mesh. Our network displaces mesh vertices in any direction (i.e., in the normal and tangential direction), enabling synthesis of geometric textures, which cannot be expressed by a simple 2D displacement map. Learning and synthesizing on local geometric patches enables a genus-oblivious framework, facilitating texture transfer between shapes of different genus.
Point clouds are a popular representation for 3D shapes. However, they encode a particular sampling without accounting for shape priors or non-local information. We advocate for the use of a hierarchical Gaussian mixture model (hGMM), which is a comp act, adaptive and lightweight representation that probabilistically defines the underlying 3D surface. We present PointGMM, a neural network that learns to generate hGMMs which are characteristic of the shape class, and also coincide with the input point cloud. PointGMM is trained over a collection of shapes to learn a class-specific prior. The hierarchical representation has two main advantages: (i) coarse-to-fine learning, which avoids converging to poor local-minima; and (ii) (an unsupervised) consistent partitioning of the input shape. We show that as a generative model, PointGMM learns a meaningful latent space which enables generating consistent interpolations between existing shapes, as well as synthesizing novel shapes. We also present a novel framework for rigid registration using PointGMM, that learns to disentangle orientation from structure of an input shape.
Many images shared over the web include overlaid objects, or visual motifs, such as text, symbols or drawings, which add a description or decoration to the image. For example, decorative text that specifies where the image was taken, repeatedly appea rs across a variety of different images. Often, the reoccurring visual motif, is semantically similar, yet, differs in location, style and content (e.g. text placement, font and letters). This work proposes a deep learning based technique for blind removal of such objects. In the blind setting, the location and exact geometry of the motif are unknown. Our approach simultaneously estimates which pixels contain the visual motif, and synthesizes the underlying latent image. It is applied to a single input image, without any user assistance in specifying the location of the motif, achieving state-of-the-art results for blind removal of both opaque and semi-transparent visual motifs.
Polygonal meshes provide an efficient representation for 3D shapes. They explicitly capture both shape surface and topology, and leverage non-uniformity to represent large flat regions as well as sharp, intricate features. This non-uniformity and irr egularity, however, inhibits mesh analysis efforts using neural networks that combine convolution and pooling operations. In this paper, we utilize the unique properties of the mesh for a direct analysis of 3D shapes using MeshCNN, a convolutional neural network designed specifically for triangular meshes. Analogous to classic CNNs, MeshCNN combines specialized convolution and pooling layers that operate on the mesh edges, by leveraging their intrinsic geodesic connections. Convolutions are applied on edges and the four edges of their incident triangles, and pooling is applied via an edge collapse operation that retains surface topology, thereby, generating new mesh connectivity for the subsequent convolutions. MeshCNN learns which edges to collapse, thus forming a task-driven process where the network exposes and expands the important features while discarding the redundant ones. We demonstrate the effectiveness of our task-driven pooling on various learning tasks applied to 3D meshes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا