ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper deals with monic orthogonal polynomial sequences (MOPS in short) generated by a Geronimus canonical spectral transformation of a positive Borel measure $mu$, i.e., begin{equation*} frac{1}{(x-c)}dmu (x)+Ndelta (x-c), end{equation*} for som e free parameter $N in mathbb{R}_{+}$ and shift $c$. We analyze the behavior of the corresponding MOPS. In particular, we obtain such a behavior when the mass $N$ tends to infinity as well as we characterize the precise values of $N$ such the smallest (respectively, the largest) zero of these MOPS is located outside the support of the original measure $mu$. When $mu$ is semi-classical, we obtain the ladder operators and the second order linear differential equation satisfied by the Geronimus perturbed MOPS, and we also give an electrostatic interpretation of the zero distribution in terms of a logarithmic potential interaction under the action of an external field. We analyze such an equilibrium problem when the mass point of the perturbation $c$ is located outside of the support of $mu$.
We analyze the effect of symmetrization in the theory of multiple orthogonal polynomials. For a symmetric sequence of type II multiple orthogonal polynomials satisfying a high-term recurrence relation, we fully characterize the Weyl function associat ed to the corresponding block Jacobi matrix as well as the Stieltjes matrix function. Next, from an arbitrary sequence of type II multiple orthogonal polynomials with respect to a set of d linear functionals, we obtain a total of d+1 sequences of type II multiple orthogonal polynomials, which can be used to construct a new sequence of symmetric type II multiple orthogonal polynomials. Finally, we prove a Favard-type result for certain sequences of matrix multiple orthogonal polynomials satisfying a matrix four-term recurrence relation with matrix coefficients.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا