ترغب بنشر مسار تعليمي؟ اضغط هنا

This volume contains a selection of papers presented at LFMTP 2020, the 15th International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP), held the 29-30th of June, 2019, using the Zoom video conferencing tool due to C OVID restrictions. Officially the workshop was held in Paris, France, and it was affiliated with IJCAR 2020, FSCD 2020 and many other satellite events. Logical frameworks and meta-languages form a common substrate for representing, implementing and reasoning about a wide variety of deductive systems of interest in logic and computer science. Their design, implementation and their use in reasoning tasks, ranging from the correctness of software to the properties of formal systems, have been the focus of considerable research over the last two decades. This workshop will bring together designers, implementors and practitioners to discuss various aspects impinging on the structure and utility of logical frameworks, including the treatment of variable binding, inductive and co-inductive reasoning techniques and the expressiveness and lucidity of the reasoning process.
119 - Zhe Hou , David Sanan , Alwen Tiu 2019
SPARC processors have many applications in mission-critical industries such as aviation and space engineering. Hence, it is important to provide formal frameworks that facilitate the verification of hardware and software that run on or interface with these processors. This paper presents the first mechanised SPARC Total Store Ordering (TSO) memory model which operates on top of an abstract model of the SPARC Instruction Set Architecture (ISA) for multi-core processors. Both models are specified in the theorem prover Isabelle/HOL. We formalise two TSO memory models: one is an adaptation of the axiomatic SPARC TSO model, the other is a novel operational TSO model which is suitable for verifying execution results. We prove that the operational model is sound and complete with respect to the axiomatic model. Finally, we give verification examples with two case studies drawn from the SPARCv9 manual.
In the logic programming paradigm, it is difficult to develop an elegant solution for generating distinguishing formulae that witness the failure of open-bisimilarity between two pi-calculus processes; this was unexpected because the semantics of the pi-calculus and open bisimulation have already been elegantly specified in higher-order logic programming systems. Our solution using Haskell defines the formulae generation as a tree transformation from the forest of all nondeterministic bisimulation steps to a pair of distinguishing formulae. Thanks to laziness in Haskell, only the necessary paths demanded by the tree transformation function are generated. Our work demonstrates that Haskell and its libraries provide an attractive platform for symbolically analyzing equivalence properties of labeled transition systems in an environment sensitive setting.
Open bisimilarity is defined for open process terms in which free variables may appear. The insight is, in order to characterise open bisimilarity, we move to the setting of intuitionistic modal logics. The intuitionistic modal logic introduced, call ed $mathcal{OM}$, is such that modalities are closed under substitutions, which induces a property known as intuitionistic hereditary. Intuitionistic hereditary reflects in logic the lazy instantiation of free variables performed when checking open bisimilarity. The soundness proof for open bisimilarity with respect to our intuitionistic modal logic is mechanised in Abella. The constructive content of the completeness proof provides an algorithm for generating distinguishing formulae, which we have implemented. We draw attention to the fact that there is a spectrum of bisimilarity congruences that can be characterised by intuitionistic modal logics.
145 - Zhe Hou , Alwen Tiu 2016
Existing work on theorem proving for the assertion language of separation logic (SL) either focuses on abstract semantics which are not readily available in most applications of program verification, or on concrete models for which completeness is no t possible. An important element in concrete SL is the points-to predicate which denotes a singleton heap. SL with the points-to predicate has been shown to be non-recursively enumerable. In this paper, we develop a first-order SL, called FOASL, with an abstracted version of the points-to predicate. We prove that FOASL is sound and complete with respect to an abstract semantics, of which the standard SL semantics is an instance. We also show that some reasoning principles involving the points-to predicate can be approximated as FOASL theories, thus allowing our logic to be used for reasoning about concrete program verification problems. We give some example theories that are sound with respect to different variants of separation logics from the literature, including those that are incompatible with Reynoldss semantics. In the experiment we demonstrate our FOASL based theorem prover which is able to handle a large fragment of separation logic with heap semantics as well as non-standard semantics.
This paper explores the proof theory necessary for recommending an expressive but decidable first-order system, named MAV1, featuring a de Morgan dual pair of nominal quantifiers. These nominal quantifiers called `new and `wen are distinct from the s elf-dual Gabbay-Pitts and Miller-Tiu nominal quantifiers. The novelty of these nominal quantifiers is they are polarised in the sense that `new distributes over positive operators while `wen distributes over negative operators. This greater control of bookkeeping enables private names to be modelled in processes embedded as formulae in MAV1. The technical challenge is to establish a cut elimination result, from which essential properties including the transitivity of implication follow. Since the system is defined using the calculus of structures, a generalisation of the sequent calculus, novel techniques are employed. The proof relies on an intricately designed multiset-based measure of the size of a proof, which is used to guide a normalisation technique called splitting. The presence of equivariance, which swaps successive quantifiers, induces complex inter-dependencies between nominal quantifiers, additive conjunction and multiplicative operators in the proof of splitting. Every rule is justified by an example demonstrating why the rule is necessary for soundly embedding processes and ensuring that cut elimination holds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا