ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a description of CMB anisotropies generated by tensor perturbations in f(R) theories of gravity. The temperature power spectrum in the special case of $f(R)=R^n$ is computed using a modified version of CAMB package.
Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable to explain the phenomena of dark energy, imposes that current research focuses on a more precise study of the possible effects of modified gravity may have on both cosmological and local levels. In this paper, we focus on the analysis of a type of modified gravity, the so-called f(R,G) gravity and we perform a deep analysis on the stability of important cosmological solutions. This not only can help to constrain the form of the gravitational action, but also facilitate a better understanding of the behavior of the perturbations in this class of higher order theories of gravity, which will lead to a more precise analysis of the full spectrum of cosmological perturbations in future.
If the present dark matter in the Universe annihilates into Standard Model particles, it must contribute to the gamma ray fluxes detected on the Earth. The magnitude of such contribution depends on the particular dark matter candidate, but certain fe atures of the produced spectra may be analyzed in a rather model-independent fashion. In this communication we briefly revise the complete photon spectra coming from WIMP annihilation into Standard Model particle-antiparticle pairs obtained by extensive Monte Carlo simulations and consequent fitting functions presented by Dombriz et al. in a wide range of WIMP masses. In order to illustrate the usefulness of these fitting functions, we mention how these results may be applied to the so-called brane-world theories whose fluctuations, the branons, behave as WIMPs and therefore may spontaneously annihilate in SM particles. The subsequent $gamma$-rays signal in the framework of dark matter indirect searches from Milky Way dSphs and Galactic Center may provide first evidences for this scenario.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا