ترغب بنشر مسار تعليمي؟ اضغط هنا

We present results from our analysis of Chandra X-ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the gamma-ray flare of 2011 April. Despite hints in the X-ra y data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the inner knot, i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the gamma-ray flares and suggest that the most dramatic gamma-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.
(Abridged) We present a deep Chandra observation of the late-type barred spiral galaxy NGC 2903. The Chandra data reveal soft (kT_e ~ 0.2-0.5keV) diffuse emission in the nuclear starburst region and extending ~5kpc to the north and west of the nucleu s. Much of this soft hot gas is likely to be from local active star-forming regions; however, besides the nuclear region, the morphology of hot gas does not strongly correlate with sites of active star formation. The central ~650 pc radius starburst zone exhibits much higher surface brightness diffuse emission than the surrounding regions and a harder spectral component in addition to its soft component. We interpret the hard component as being of thermal origin with kT_e~3.6keV and to be directly associated with a wind fluid produced by supernovae and massive star winds. The inferred terminal velocity for this hard component, ~1100 km/s, exceeds the local galaxy escape velocity suggesting a potential outflow. The softer extended emission does not display an obvious outflow geometry. However, the column density through which the X-rays are transmitted is lower to the west of the nucleus compared to the east and the surface brightness is higher there suggesting some soft hot gas originates from above the disk; viewed directly from the western zone but through the intervening galaxy disk from the eastern zone. There are several point-like sources in the nuclear region with X-ray spectra typical of compact binaries. None of these are coincident with the mass center of the galaxy and we place an upper limit luminosity from any point-like nuclear source to be < 2x10^38 ergs/s in the 0.5-8.0keV band which indicates that NGC 2903 lacks an active galactic nucleus. Heating from the nuclear starburst and a galactic wind may be responsible for preventing cold gas from accreting onto the galactic center.
One hundred seven ultraluminous X-ray (ULX) sources with 0.3-10.0 keV luminosities in excess of 1e39 erg/s are identified in a complete sample of 127 nearby galaxies. The sample includes all galaxies within 14.5 Mpc above the completeness limits of b oth the Uppsala Galaxy Catalog and the Infrared Astronomical Satellite survey. The galaxy sample spans all Hubble types, a four decade range in mass and in star-formation rate. ULXs are detected in this sample at rates of one per 3.2e10 solar mass, one per 0.5 solar mass/year star-formation rate, and one per 57 cubic Mpc corresponding to a luminosity density of ~2e37 erg/s/Mpc3. At these rates we estimate as many as 19 additional ULXs remain undetected in fainter dwarf galaxies within the survey volume. An estimated 14 or 13%, of the 107 ULX candidates are expected to be background sources. The differential ULX luminosity function shows a power law slope of -1.2 to -2.0 with an exponential cutoff at 2e40 erg/s with precise values depending on the model and on whether the ULX luminosities are estimated from their observed numbers of counts or, for a subset of candidates, from their spectral shapes. Extrapolating the observed luminosity function predicts at most one very luminous ULX, L~1e41 erg/s, within a distance as small as 100 Mpc. The luminosity distribution of ULXs within the local universe cannot account for the recent claims of luminosities in excess of 2e41 erg/s requiring a new population class to explain these extreme objects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا