ترغب بنشر مسار تعليمي؟ اضغط هنا

The equation of state of a system at equilibrium may be derived from the canonical or the grand canonical partition function. The former is a function of temperature T, while the latter also depends on the chemical potential mu for diffusive equilibr ium. In the literature, often the variables beta=(k_BT)^{-1} and fugacity z=exp(beta mu) are used instead. For real beta and z, the partition functions are always positive, being sums of positive terms. Following Lee, Yang and Fisher, we point out that valuable information about the system may be gleaned by examining the zeros of the grand partition function in the complex z plane (real beta), or of the canonical partition function in the complex beta plane. In case there is a phase transition, these zeros close in on the real axis in the thermodynamic limit. Examples are given from the van der Waal gas, and from the ideal Bose gas, where we show that even for a finite system with a small number of particles, the method is useful.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا