ترغب بنشر مسار تعليمي؟ اضغط هنا

By planning through a learned dynamics model, model-based reinforcement learning (MBRL) offers the prospect of good performance with little environment interaction. However, it is common in practice for the learned model to be inaccurate, impairing p lanning and leading to poor performance. This paper aims to improve planning with an importance sampling framework that accounts and corrects for discrepancy between the true and learned dynamics. This framework also motivates an alternative objective for fitting the dynamics model: to minimize the variance of value estimation during planning. We derive and implement this objective, which encourages better prediction on trajectories with larger returns. We observe empirically that our approach improves the performance of current MBRL algorithms on two stochastic control problems, and provide a theoretical basis for our method.
Many successful deep learning architectures are equivariant to certain transformations in order to conserve parameters and improve generalization: most famously, convolution layers are equivariant to shifts of the input. This approach only works when practitioners know the symmetries of the task and can manually construct an architecture with the corresponding equivariances. Our goal is an approach for learning equivariances from data, without needing to design custom task-specific architectures. We present a method for learning and encoding equivariances into networks by learning corresponding parameter sharing patterns from data. Our method can provably represent equivariance-inducing parameter sharing for any finite group of symmetry transformations. Our experiments suggest that it can automatically learn to encode equivariances to common transformations used in image processing tasks. We provide our experiment code at https://github.com/AllanYangZhou/metalearning-symmetries.
Imitation learning allows agents to learn complex behaviors from demonstrations. However, learning a complex vision-based task may require an impractical number of demonstrations. Meta-imitation learning is a promising approach towards enabling agent s to learn a new task from one or a few demonstrations by leveraging experience from learning similar tasks. In the presence of task ambiguity or unobserved dynamics, demonstrations alone may not provide enough information; an agent must also try the task to successfully infer a policy. In this work, we propose a method that can learn to learn from both demonstrations and trial-and-error experience with sparse reward feedback. In comparison to meta-imitation, this approach enables the agent to effectively and efficiently improve itself autonomously beyond the demonstration data. In comparison to meta-reinforcement learning, we can scale to substantially broader distributions of tasks, as the demonstration reduces the burden of exploration. Our experiments show that our method significantly outperforms prior approaches on a set of challenging, vision-based control tasks.
188 - Allan Zhou , Anca D. Dragan 2018
We focus on autonomously generating robot motion for day to day physical tasks that is expressive of a certain style or emotion. Because we seek generalization across task instances and task types, we propose to capture style via cost functions that the robot can use to augment its nominal task cost and task constraints in a trajectory optimization process. We compare two approaches to representing such cost functions: a weighted linear combination of hand-designed features, and a neural network parameterization operating on raw trajectory input. For each cost type, we learn weights for each style from user feedback. We contrast these approaches to a nominal motion across different tasks and for different styles in a user study, and find that they both perform on par with each other, and significantly outperform the baseline. Each approach has its advantages: featurized costs require learning fewer parameters and can perform better on some styles, but neural network representations do not require expert knowledge to design features and could even learn more complex, nuanced costs than an expert can easily design.
Our goal is to enable robots to emph{time} their motion in a way that is purposefully expressive of their internal states, making them more transparent to people. We start by investigating what types of states motion timing is capable of expressing, focusing on robot manipulation and keeping the path constant while systematically varying the timing. We find that users naturally pick up on certain properties of the robot (like confidence), of the motion (like naturalness), or of the task (like the weight of the object that the robot is carrying). We then conduct a hypothesis-driven experiment to tease out the directions and magnitudes of these effects, and use our findings to develop candidate mathematical models for how users make these inferences from the timing. We find a strong correlation between the models and real user data, suggesting that robots can leverage these models to autonomously optimize the timing of their motion to be expressive.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا