ترغب بنشر مسار تعليمي؟ اضغط هنا

We address the description of the tropicalization of families of rational varieties under parametrizations with prescribed support, via curve valuations. We recover and extend results by Sturmfels, Tevelev and Yu for generic coefficients, considering rational parametrizations with non-trivial denominator. The advantage of our point of view is that it can be generalized to deal with non-generic parametrizations. We provide a detailed analysis of the degree of the closed image, based on combinatorial conditions on the relative positions of the supports of the polynomials defining the parametrization. We obtain a new formula and finer bounds on the degree, when the supports of the polynomials are different. We also present a new formula and bounds for the order at the origin in case the closed image is a hypersurface.
An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of bi nomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hypergeometric differential equations in several variables.
Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all de tailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا