ترغب بنشر مسار تعليمي؟ اضغط هنا

In this article we study the Dyson Bessel process, which describes the evolution of singular values of rectangular matrix Brownian motions, and prove a large deviation principle for its empirical particle density. We then use it to obtain the asympto tics of the so-called rectangular spherical integrals as $m,n$ go to infinity while $m/n$ converges.
For a fixed quadratic polynomial $mathfrak{p}$ in $n$ non-commuting variables, and $n$ independent $Ntimes N$ complex Ginibre matrices $X_1^N,dots, X_n^N$, we establish the convergence of the empirical spectral distribution of $P^N =mathfrak{p}(X_1^N ,dots, X_n^N)$ to the Brown measure of $mathfrak{p}$ evaluated at $n$ freely independent circular elements $c_1,dots, c_n$ in a non-commutative probability space. The main step of the proof is to obtain quantitative control on the pseudospectrum of $P^N$. Via the well-known linearization trick this hinges on anti-concentration properties for certain matrix-valued random walks, which we find can fail for structural reasons of a different nature from the arithmetic obstructions that were illuminated in works on the Littlewood--Offord problem for discrete scalar random walks.
In this article, we develop a framework to study the large deviation principle for matrix models and their quantiz
125 - Alice Guionnet 2018
In this paper, we consider the addition of two matrices in generic position, namely A + U BU * , where U is drawn under the Haar measure on the unitary or the orthogonal group. We show that, under mild conditions on the empirical spectral measures of the deterministic matrices A and B, the law of the largest eigenvalue satisfies a large deviation principle, in the scale N, with an explicit rate function involving the limit of spherical integrals. We cover in particular all the cases when A and B have no outliers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا